Cyclic Groups
THEOREM 1. Let g be an element of a group G and write
(9)={d" : k ez}

Then (g) is a subgroup of G.

Proof. Since 1 = ¢°, 1 € (g). Suppose a, b € {g). Thena = g*, b = g™ and ab = gFg™ = gF*+™.
Hence ab € {(g) (note that k +m € Z). Moreover, a~! = (¢*)"! = g% and —k € Z, so that
a~! € (g). Thus, we have checked the three conditions necessary for {g) to be a subgroup of G.

DEeFINITION 2. If g € G, then the subgroup (g) = {g"* : k € Z} is called the cyclic subgroup
of G generated by g, If G = (g), then we say that G is a cyclic group and that g is a generator
of G.

ExamprEs. (1) If G is any group then {1} = (1) is a cyclic subgroup of G.

(2) The group G = {1, —1, 4, —i} C C* (the group operation is multiplication of complex
numbers) is cyclic with generator . In fact (i) = {i® = 1,i! =4,i> = —1,i% = —i} = G. Note that
—i is also a generator for G since (—i) = {(—i)" = 1, (=)' = —i,(—i)? = —1,(—i)® = i} = G.
Thus a cyclic group may have more than one generator. However, not all elements of G need be
generators. For example (—1) = {1,—1} # G so —1 is not a generator of G.

(3) The group G = Z% = the group of units of the ring Z is a cyclic group with generator 3.
Indeed,

3)={1=3%°3=3'2=3%6=3%4=3"5=3"1=G.

Note that 5 is also a generator of G, but that (2) = {1,2,4} # G so that 2 is not a generator of G.

(4) G = (r) = {7 : k € Z} is a cyclic subgroup of R*.

(5) The group G = Z§ is not cyclic. Indeed, since Z§ = {1, 3, 5, 7} and (1) = {1}, (3) = {1, 3},
(5) = {1,5}, (7) = {1, 7}, it follows that Z§ # (a) for any a € Z.

If a group G is written additively, then the identity element is denoted 0, the inverse of a € G
is denoted —a, and the powers of a become na in additive notation. Thus, with this notation,
the cyclic subgroup of G generated by a is (a) = {na : n € Z}, consisting of all the multiples of
a. Among groups that are normally written additively, the following are two examples of cyclic
groups.

(6) The integers Z are a cyclic group. Indeed, Z = (1) since each integer k = k-1 is a multiple
of 1,80 k € (1) and (1) = Z. Also, Z = (—1) because k = (—k) - (—1) for each k € Z.
(7) Z,, is a cyclic group under addition with generator 1.

THEOREM 3. Let g be an element of a group G. Then there are two possibilites for the cyclic
subgroup (g).

Case 1: The cyclic subgroup (g) is finite. In this case, there exists a smallest positive integer
n such that g" = 1 and we have

(a) g* =1 if and only if nlk.

(b) g% = g™ if and only if k =m (mod n).

(e) (9) =11, g,9% ..., g" '} and the elements 1, g, g>, ..., g

Case 2: The cyclic subgroup (g) is infinite. Then

(d) g¥ =1 if and only if k = 0.

(€) g* = g™ if and only if k = m.

() g =1{..,93 92911, 9 9% g3 ...} and all of these powers of g are distinct.

=1 gre distinct.

Proof. Case 1. Since (g) is finite, the powers g, g2, g%, ... are not all distinct, so let g* = g™
with & < m. Then g™ % = 1 where m — k > 0. Hence there is a positive integer | with ¢ = 1.
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Hence there is a smallest such positive integer. We let n be this smallest positive integer, i.e., n is
the smallest positive integer such that g" = 1.

(a) If n|k then k = gn for some ¢ € n. Then g¥ = g9 = (¢g")9 = 19 = 1. Conversely, if g* = 1,
use the division algorithm to write k = gn +r with 0 <7 < n. Then g" = ¢g¥(¢")"7 = 1(1)"9 = 1.
Since r < n, this contradicts the minimality of n unless » = 0. Hence r = 0 and k& = gn so that

(b) g* = g™ if and only if g*~™ = 1. Now apply Part (a).

(c) Clearly, {1, g, g%, ..., g" '} C (g). To prove the other inclusion, let a € (g). Then a = g*
for some k € Z. As in Part (a), use the division algorithm to write k = gn+r, where 0 <r <n-—1.
Then

a=gF=g"""=(g")lg" =19 =g"€{l,9, 9% ..., 9" "}
which shows that (g) C {1, g, ¢, ..., g" '}, and hence that
(9)=1{1,9, 9% ... 9" '}

Finally, suppose that ¢¥ = ¢™ where 0 < k <m <n—1. Then ¢ * =1and 0 < m —k < n.
This implies that m — k = 0 because n is the smallest positive power of g which equals 1. Hence
all of the elements 1, g, ¢°, ..., ¢" ! are distinct.

Case 2. (d) Certainly, g* = 1if k=0. If g* =1, kK # 0, then g7% = (¢*)"! = 17! = 1, also.
Hence g™ =1 for some n > 0, which implies that (g) is finite by the proof of Part (c) contrary to
our hypothesis in Case 2. Thus ¢g* = 1 implies that k = 0.

(e) g¥ = g™ if and only if g*~™ = 1. Now apply Part (d).

(f) {g9) = {g* : k € Z} by definition of (g), so all that remains is to check that these powers
are distinct. But this is the content of Part (e).

Recall that if g is an element of a group G, then the order of g is the smallest postive integer
n such that g" = 1, and it is denoted |g| = n. If there is no such positive integer, then we say that
g has infinte order, denoted |g| = co. By Theorem 3, the concept of order of an element g and
order of the cyclic subgroup generated by g are the same.

COROLLARY 4. If g is an element of a group G, then |g| = |{(g)|.
Proof. This is immediate from Theorem 3, Part (c).

If G is a cyclic group of order n, then it is easy to compute the order of all elements of G.
This is the content of the following result.

THEOREM 5. Let G = (g) be a cyclic group of order n, and let 0 <k <n—1. If m = ged(k,n),
then |g*| = L
m

Proof. Let k = ms and n = mt. Then (¢gF)"/™ = ghkn/m = gmsn/m — (gn)s = 1° = 1. Hence
n/m divides |g¥| by Theorem 3 Part (a). Now suppose that (¢*)” = 1. Then ¢g*" = 1, so by
Theorem 3 Part (a) n|kr. Hence

n, [k
()
m'\m

and since n/m and k/m are relatively prime, it follows that n/m divides r. Hence n/m is the
smallest power of g¥ which equals 1, so |g¥| = n/m.

TueOREM 6. Let G = (g) be a cyclic group where |g| = n. Then G = (g*) if and only if
ged(k,n) = 1.

Proof. By Theorem 5, if m = ged(k,n), then |g*| = n/m. But G = (g*) 1f and only if
|g¥| = |G| = n and this happens if and only if m = 1, i.e., if and only if gcd(k,n) =
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ExampLE If G = (g) is a cyclic group of order 12, then the generators of G are the powers g*
where ged(k,12) = 1, that is g, ¢°, g7, and g'!. In the particular case of the additive cyclic group
Z,,, the generators are the integers 1, 5, 7, 11 (mod 12).

Now we ask what the subgroups of a cyclic group look like. The question is completely
answered by Theorem 8. Theorem 7 is a preliminary, but important, result.

THEOREM 7. Every subgroup of a cyclic group is cyclic.

Proof. Suppose that G = (g) = {g¥ : k € Z} is a cyclic group and let H be a subgroup of G.
If H = {1}, then H is cyclic, so we assume that H # {1}, and let g* € H with g¥ # 1. Then, since
H is a subgroup, ¢~% = (¢*)~! € H. Therefore, since k or —k is positive, H contains a positive
power of g, not equal to 1. So let m be the smallest positive integer such that ¢"™ € H. Then,
certainly all powers of ¢ are also in H, so we have (¢"") C H. We claim that this inclusion is
an equality. To see this, let g* be any element of H (recall that all elements of G, and hence H,
are powers of g since G is cyclic). By the division algorithm, we may write k = gm + r where
0 <r<m. But gF¥ = g9+ = gimg" = (g™)%g" so that

g =(9") """ € H.

Since m is the smallest positive integer with ¢"* € H and 0 < r < m, it follows that we must have
r = 0. Then g* = (¢g"™)? € (g™). Hence we have shown that H C (¢g™) and hence H = (g™). That
is H is cyclic with generator ¢ where m is the smallest postive integer for which g™ € H.

THEOREM 8. (Fundamental Theorem of Finite Cyclic Groups) Let G = (g) be a cyclic
group of order n.

(a) If H is any subgroup of G, then H = (g%) for some d|n.

(b) If H is any subgroup of G with |H| = k, then k|n.

(¢) If k|n, then (g™'*) is the unique subgroup of G of order k.

Proof. (a) By Theorem 7, H is a cyclic group and since |G| = n < oo, it follows that H = (¢")
where m > 0. Let d = gcd(m,n). Since d|n it is sufficient to show that H = (g?). But d|m also,
so m = qd. Then g™ = (g%)7 so g™ € (g?). Hence H = (g™) C (g%). But d = rm + sn, where 7,
s€Z,so

gt =g =g g = (g™ (g") = (g™)"(1)° = (¢™)" € (¢™) = H.

This shows that (g¢) C H and hence (g¢) = H.

(b) By Part (a), H = (g%) where d|n. Then k = |H| = n/d so k|n.

(c) Suppose that K is any subgroup of G of order k. By Part (a), let K = (¢"") where m|n.
Then Theorem 5 gives k = |K| = |¢™| = n/m. Hence m = n/k, so K = (g™*). This proves (c).

ReEMARK Part (b) of Theorem 8 is actually true for any finite group G, whether or not it is
cyclic. This result is Lagrange’s Theorem (Theorem 3.8, Page 65 of your text).

The subgroups of a group G can be diagrammatically illustrated by listing the subgroups, and
indicating inclusion relations by means of a line directed upward from H to K if H is a subgroup
of K. Such a scheme is called the lattice diagram for the subgroups of the group G. We will
illustrate by determining the lattice diagram for all the subgroups of a cyclic group G = (g) of
order 12. Since the order of g is 12, Theorem 8 (c) shows that there is exactly one subgroup (g%)
for each divisor d of 12. The divisors of 12 are 1, 2, 3, 4, 6, 12. Then the unique subgroup of G of
each of these orders is, respectively,

{1} =", (¢, Y, *) (&), (9=0G.



Note that {(g™) C (g*) if and only if k|m. Hence the lattice diagram of G is:

G
/ AN
(9%) (9*)
/! AN /!
(9" (%)
AN /!
(1)



