Cyclic Groups

Theorem 1. Let g be an element of a group G and write

$$
\langle g\rangle=\left\{g^{k}: k \in \mathbf{Z}\right\} .
$$

Then $\langle g\rangle$ is a subgroup of G.
Proof. Since $1=g^{0}, 1 \in\langle g\rangle$. Suppose $a, b \in\langle g\rangle$. Then $a=g^{k}, b=g^{m}$ and $a b=g^{k} g^{m}=g^{k+m}$. Hence $a b \in\langle g\rangle$ (note that $k+m \in \mathbf{Z}$). Moreover, $a^{-1}=\left(g^{k}\right)^{-1}=g^{-k}$ and $-k \in \mathbf{Z}$, so that $a^{-1} \in\langle g\rangle$. Thus, we have checked the three conditions necessary for $\langle g\rangle$ to be a subgroup of G.

Definition 2. If $g \in G$, then the subgroup $\langle g\rangle=\left\{g^{k}: k \in \mathbf{Z}\right\}$ is called the cyclic subgroup of G generated by g, If $G=\langle g\rangle$, then we say that G is a cyclic group and that g is a generator of G.

Examples. (1) If G is any group then $\{1\}=\langle 1\rangle$ is a cyclic subgroup of G.
(2) The group $G=\{1,-1, i,-i\} \subseteq \mathbf{C}^{*}$ (the group operation is multiplication of complex numbers) is cyclic with generator i. In fact $\langle i\rangle=\left\{i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i\right\}=G$. Note that $-i$ is also a generator for G since $\langle-i\rangle=\left\{(-i)^{0}=1,(-i)^{1}=-i,(-i)^{2}=-1,(-i)^{3}=i\right\}=G$. Thus a cyclic group may have more than one generator. However, not all elements of G need be generators. For example $\langle-1\rangle=\{1,-1\} \neq G$ so -1 is not a generator of G.
(3) The group $G=\mathbf{Z}_{7}^{*}=$ the group of units of the ring \mathbf{Z}_{7} is a cyclic group with generator 3 . Indeed,

$$
\langle 3\rangle=\left\{1=3^{0}, 3=3^{1}, 2=3^{2}, 6=3^{3}, 4=3^{4}, 5=3^{5}\right\}=G
$$

Note that 5 is also a generator of G, but that $\langle 2\rangle=\{1,2,4\} \neq G$ so that 2 is not a generator of G.
(4) $G=\langle\pi\rangle=\left\{\pi^{k}: k \in \mathbf{Z}\right\}$ is a cyclic subgroup of \mathbf{R}^{*}.
(5) The group $G=\mathbf{Z}_{8}^{*}$ is not cyclic. Indeed, since $\mathbf{Z}_{8}^{*}=\{1,3,5,7\}$ and $\langle 1\rangle=\{1\},\langle 3\rangle=\{1,3\}$, $\langle 5\rangle=\{1,5\},\langle 7\rangle=\{1,7\}$, it follows that $\mathbf{Z}_{8}^{*} \neq\langle a\rangle$ for any $a \in \mathbf{Z}_{8}^{*}$.

If a group G is written additively, then the identity element is denoted 0 , the inverse of $a \in G$ is denoted $-a$, and the powers of a become $n a$ in additive notation. Thus, with this notation, the cyclic subgroup of G generated by a is $\langle a\rangle=\{n a: n \in \mathbf{Z}\}$, consisting of all the multiples of a. Among groups that are normally written additively, the following are two examples of cyclic groups.
(6) The integers \mathbf{Z} are a cyclic group. Indeed, $\mathbf{Z}=\langle 1\rangle$ since each integer $k=k \cdot 1$ is a multiple of 1 , so $k \in\langle 1\rangle$ and $\langle 1\rangle=\mathbf{Z}$. Also, $\mathbf{Z}=\langle-1\rangle$ because $k=(-k) \cdot(-1)$ for each $k \in \mathbf{Z}$.
(7) \mathbf{Z}_{n} is a cyclic group under addition with generator 1.

Theorem 3. Let g be an element of a group G. Then there are two possibilites for the cyclic subgroup $\langle g\rangle$.

Case 1: The cyclic subgroup $\langle g\rangle$ is finite. In this case, there exists a smallest positive integer n such that $g^{n}=1$ and we have
(a) $g^{k}=1$ if and only if $n \mid k$.
(b) $g^{k}=g^{m}$ if and only if $k \equiv m \quad(\bmod n)$.
(c) $\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$ and the elements $1, g, g^{2}, \ldots, g^{n-1}$ are distinct.

Case 2: The cyclic subgroup $\langle g\rangle$ is infinite. Then
(d) $g^{k}=1$ if and only if $k=0$.
(e) $g^{k}=g^{m}$ if and only if $k=m$.
(f) $\langle g\rangle=\left\{\ldots, g^{-3}, g^{-2}, g^{-1}, 1, g, g^{2}, g^{3}, \ldots\right\}$ and all of these powers of g are distinct.

Proof. Case 1. Since $\langle g\rangle$ is finite, the powers g, g^{2}, g^{3}, \ldots are not all distinct, so let $g^{k}=g^{m}$ with $k<m$. Then $g^{m-k}=1$ where $m-k>0$. Hence there is a positive integer l with $g^{l}=1$.

Hence there is a smallest such positive integer. We let n be this smallest positive integer, i.e., n is the smallest positive integer such that $g^{n}=1$.
(a) If $n \mid k$ then $k=q n$ for some $q \in n$. Then $g^{k}=g^{q n}=\left(g^{n}\right)^{q}=1^{q}=1$. Conversely, if $g^{k}=1$, use the division algorithm to write $k=q n+r$ with $0 \leq r<n$. Then $g^{r}=g^{k}\left(g^{n}\right)^{-q}=1(1)^{-q}=1$. Since $r<n$, this contradicts the minimality of n unless $r=0$. Hence $r=0$ and $k=q n$ so that $n \mid k$.
(b) $g^{k}=g^{m}$ if and only if $g^{k-m}=1$. Now apply Part (a).
(c) Clearly, $\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} \subseteq\langle g\rangle$. To prove the other inclusion, let $a \in\langle g\rangle$. Then $a=g^{k}$ for some $k \in \mathbf{Z}$. As in Part (a), use the division algorithm to write $k=q n+r$, where $0 \leq r \leq n-1$. Then

$$
a=g^{k}=g^{q n+r}=\left(g^{n}\right)^{q} g^{r}=1^{q} g^{r}=g^{r} \in\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}
$$

which shows that $\langle g\rangle \subseteq\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$, and hence that

$$
\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}
$$

Finally, suppose that $g^{k}=g^{m}$ where $0 \leq k \leq m \leq n-1$. Then $g^{m-k}=1$ and $0 \leq m-k<n$. This implies that $m-k=0$ because n is the smallest positive power of g which equals 1 . Hence all of the elements $1, g, g^{2}, \ldots, g^{n-1}$ are distinct.

Case 2. (d) Certainly, $g^{k}=1$ if $k=0$. If $g^{k}=1, k \neq 0$, then $g^{-k}=\left(g^{k}\right)^{-1}=1^{-1}=1$, also. Hence $g^{n}=1$ for some $n>0$, which implies that $\langle g\rangle$ is finite by the proof of Part (c), contrary to our hypothesis in Case 2. Thus $g^{k}=1$ implies that $k=0$.
(e) $g^{k}=g^{m}$ if and only if $g^{k-m}=1$. Now apply Part (d).
(f) $\langle g\rangle=\left\{g^{k}: k \in \mathbf{Z}\right\}$ by definition of $\langle g\rangle$, so all that remains is to check that these powers are distinct. But this is the content of Part (e).

Recall that if g is an element of a group G, then the order of g is the smallest postive integer n such that $g^{n}=1$, and it is denoted $|g|=n$. If there is no such positive integer, then we say that g has infinte order, denoted $|g|=\infty$. By Theorem 3, the concept of order of an element g and order of the cyclic subgroup generated by g are the same.

Corollary 4. If g is an element of a group G, then $|g|=|\langle g\rangle|$.
Proof. This is immediate from Theorem 3, Part (c).
If G is a cyclic group of order n, then it is easy to compute the order of all elements of G. This is the content of the following result.

Theorem 5. Let $G=\langle g\rangle$ be a cyclic group of order n, and let $0 \leq k \leq n-1$. If $m=\operatorname{gcd}(k, n)$, then $\left|g^{k}\right|=\frac{n}{m}$.

Proof. Let $k=m s$ and $n=m t$. Then $\left(g^{k}\right)^{n / m}=g^{k n / m}=g^{m s n / m}=\left(g^{n}\right)^{s}=1^{s}=1$. Hence n / m divides $\left|g^{k}\right|$ by Theorem 3 Part (a). Now suppose that $\left(g^{k}\right)^{r}=1$. Then $g^{k r}=1$, so by Theorem 3 Part (a) $n \mid k r$. Hence

$$
\frac{n}{m} \left\lvert\,\left(\frac{k}{m}\right) r\right.
$$

and since n / m and k / m are relatively prime, it follows that n / m divides r. Hence n / m is the smallest power of g^{k} which equals 1 , so $\left|g^{k}\right|=n / m$.

Theorem 6. Let $G=\langle g\rangle$ be a cyclic group where $|g|=n$. Then $G=\left\langle g^{k}\right\rangle$ if and only if $\operatorname{gcd}(k, n)=1$.

Proof. By Theorem 5, if $m=\operatorname{gcd}(k, n)$, then $\left|g^{k}\right|=n / m$. But $G=\left\langle g^{k}\right\rangle$ if and only if $\left|g^{k}\right|=|G|=n$ and this happens if and only if $m=1$, i.e., if and only if $\operatorname{gcd}(k, n)=1$.

Example If $G=\langle g\rangle$ is a cyclic group of order 12 , then the generators of G are the powers g^{k} where $\operatorname{gcd}(k, 12)=1$, that is g, g^{5}, g^{7}, and g^{11}. In the particular case of the additive cyclic group \mathbf{Z}_{12}, the generators are the integers $1,5,7,11 \quad(\bmod 12)$.

Now we ask what the subgroups of a cyclic group look like. The question is completely answered by Theorem 8. Theorem 7 is a preliminary, but important, result.

Theorem 7. Every subgroup of a cyclic group is cyclic.
Proof. Suppose that $G=\langle g\rangle=\left\{g^{k}: k \in \mathbf{Z}\right\}$ is a cyclic group and let H be a subgroup of G. If $H=\{1\}$, then H is cyclic, so we assume that $H \neq\{1\}$, and let $g^{k} \in H$ with $g^{k} \neq 1$. Then, since H is a subgroup, $g^{-k}=\left(g^{k}\right)^{-1} \in H$. Therefore, since k or $-k$ is positive, H contains a positive power of g, not equal to 1 . So let m be the smallest positive integer such that $g^{m} \in H$. Then, certainly all powers of g^{m} are also in H, so we have $\left\langle g^{m}\right\rangle \subseteq H$. We claim that this inclusion is an equality. To see this, let g^{k} be any element of H (recall that all elements of G, and hence H, are powers of g since G is cyclic). By the division algorithm, we may write $k=q m+r$ where $0 \leq r<m$. But $g^{k}=g^{q m+r}=g^{q m} g^{r}=\left(g^{m}\right)^{q} g^{r}$ so that

$$
g^{r}=\left(g^{m}\right)^{-q} g^{k} \in H
$$

Since m is the smallest positive integer with $g^{m} \in H$ and $0 \leq r<m$, it follows that we must have $r=0$. Then $g^{k}=\left(g^{m}\right)^{q} \in\left\langle g^{m}\right\rangle$. Hence we have shown that $H \subseteq\left\langle g^{m}\right\rangle$ and hence $H=\left\langle g^{m}\right\rangle$. That is H is cyclic with generator g^{m} where m is the smallest postive integer for which $g^{m} \in H$.

Theorem 8. (Fundamental Theorem of Finite Cyclic Groups) Let $G=\langle g\rangle$ be a cyclic group of order n.
(a) If H is any subgroup of G, then $H=\left\langle g^{d}\right\rangle$ for some $d \mid n$.
(b) If H is any subgroup of G with $|H|=k$, then $k \mid n$.
(c) If $k \mid n$, then $\left\langle g^{n / k}\right\rangle$ is the unique subgroup of G of order k.

Proof. (a) By Theorem $7, H$ is a cyclic group and since $|G|=n<\infty$, it follows that $H=\left\langle g^{m}\right\rangle$ where $m>0$. Let $d=\operatorname{gcd}(m, n)$. Since $d \mid n$ it is sufficient to show that $H=\left\langle g^{d}\right\rangle$. But $d \mid m$ also, so $m=q d$. Then $g^{m}=\left(g^{d}\right)^{q}$ so $g^{m} \in\left\langle g^{d}\right\rangle$. Hence $H=\left\langle g^{m}\right\rangle \subseteq\left\langle g^{d}\right\rangle$. But $d=r m+s n$, where r, $s \in \mathbf{Z}$, so

$$
g^{d}=g^{r m+s n}=g^{r m} g^{s n}=\left(g^{m}\right)^{r}\left(g^{n}\right)^{s}=\left(g^{m}\right)^{r}(1)^{s}=\left(g^{m}\right)^{r} \in\left\langle g^{m}\right\rangle=H
$$

This shows that $\left\langle g^{d}\right\rangle \subseteq H$ and hence $\left\langle g^{d}\right\rangle=H$.
(b) By Part (a), $H=\left\langle g^{d}\right\rangle$ where $d \mid n$. Then $k=|H|=n / d$ so $k \mid n$.
(c) Suppose that K is any subgroup of G of order k. By Part (a), let $K=\left\langle g^{m}\right\rangle$ where $m \mid n$. Then Theorem 5 gives $k=|K|=\left|g^{m}\right|=n / m$. Hence $m=n / k$, so $K=\left\langle g^{n / k}\right\rangle$. This proves (c).

Remark Part (b) of Theorem 8 is actually true for any finite group G, whether or not it is cyclic. This result is Lagrange's Theorem (Theorem 3.8, Page 65 of your text).

The subgroups of a group G can be diagrammatically illustrated by listing the subgroups, and indicating inclusion relations by means of a line directed upward from H to K if H is a subgroup of K. Such a scheme is called the lattice diagram for the subgroups of the group G. We will illustrate by determining the lattice diagram for all the subgroups of a cyclic group $G=\langle g\rangle$ of order 12. Since the order of g is 12 , Theorem 8 (c) shows that there is exactly one subgroup $\left\langle g^{d}\right\rangle$ for each divisor d of 12 . The divisors of 12 are $1,2,3,4,6,12$. Then the unique subgroup of G of each of these orders is, respectively,

$$
\{1\}=\left\langle g^{12}\right\rangle, \quad\left\langle g^{6}\right\rangle, \quad\left\langle g^{4}\right\rangle, \quad\left\langle g^{3}\right\rangle, \quad\left\langle g^{2}\right\rangle, \quad\langle g\rangle=G .
$$

Note that $\left\langle g^{m}\right\rangle \subseteq\left\langle g^{k}\right\rangle$ if and only if $k \mid m$. Hence the lattice diagram of G is:

