1. Use Lagrange Multipliers to find the global maximum and minimum values of $f(x, y)=$ $x^{2}+2 y^{2}-4 y$ subject to the constraint $x^{2}+y^{2}=9$.

- Solution. Let $g(x, y)=x^{2}+y^{2}$. Then solve the equations $\nabla f(x, y)=\lambda \nabla g(x, y)$, $g(x, y)=k$ to find the critical points:

$$
\begin{aligned}
2 x & =\lambda 2 x \\
4 y-4 & =\lambda 2 y \\
x^{2}+y^{2} & =9 .
\end{aligned}
$$

The first equation gives $x(\lambda-1)=0$ so $x=0$ or $\lambda=1$. If $x=0$, then the third equation gives $y^{2}=9$ so $y= \pm 3$. If $\lambda=1$ then the second equation gives $4 y-4=2 y$ so $y=2$. The third equation then gives $x^{2}=2^{2}=9$ so $x= \pm \sqrt{5}$. Thus, there are four critical points: $(0, \pm 3)$ and $(\pm \sqrt{5}, 2)$. Evaluating $f(x, y)$ at these points gives: $f(0,3)=6, f(0,-3)=30, f(\sqrt{5}, 2)=5=\mathbb{F}(-\sqrt{5}, 2)$. Therefore, the global maximum is 30 , which occurs at $(0,-3)$, and the global minimum is 5 , which occurs at the two points $(\pm \sqrt{5}, 2)$.
2. Compute $\int_{0}^{2} \int_{y^{2}}^{2 y}(4 x-y) d x d y$.

- Solution.

$$
\begin{aligned}
\int_{0}^{2} \int_{y^{2}}^{2 y}(4 x-y) d x d y & =\left.\int_{0}^{2}\left(2 x^{2}-x y\right)\right|_{x=y^{2}} ^{x=2 y} d y \\
& =\int_{0}^{2}\left(6 y^{2}-2 y^{4}+y^{3}\right) d y=\left.\left(2 y^{3}-\frac{2 y^{5}}{5}+\frac{y^{4}}{4}\right)\right|_{0} ^{2} \\
& =16-\frac{64}{5}+4=\frac{36}{5}
\end{aligned}
$$

3. Compute $\int_{0}^{1} \int_{0}^{x} \int_{0}^{x y} x y z d z d y d x$.

- Solution.

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x} \int_{0}^{x y} x y z d z d y d x & =\left.\int_{0}^{1} \int_{0}^{x} \frac{x y z^{2}}{2}\right|_{z=0} ^{z=x y} d y d x \\
& =\int_{0}^{1} \int_{0}^{x} \frac{x^{3} y^{3}}{2} d y d x=\left.\int_{0}^{1} \frac{x^{3} y^{4}}{8}\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{1} \frac{x^{7}}{7} d x=\left.\frac{x^{8}}{64}\right|_{0} ^{1}=\frac{1}{64}
\end{aligned}
$$

4. Let R be the region in the plane bounded by the graphs of $y^{2}=4+x$ and $y^{2}=4-x$.
(a) Sketch R.

- Solution.

(b) If $f(x, y)$ is an arbitrary continuous function defined on R, express $\iint_{R} f(x, y) d A$ as an iterated double integral.

- Solution.

$$
\iint_{R} f(x, y) d A=\int_{-2}^{2} \int_{y^{2}-4}^{4-y^{2}} f(x, y) d x d y
$$

5. Compute the following integral:

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

(Hint: First draw the domain of integration. Then reverse the order of integration.)

- Solution. First draw the domain of integration R :

Then write the curve $x=\sqrt{y}$ as $y=x^{2}$ and change the order of integration

$$
\begin{aligned}
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y & =\int_{0}^{1} \int_{0}^{x^{2}} \sin \left(x^{3}\right) d y d x=\left.\int_{0}^{1} y \sin \left(x^{3}\right)\right|_{0} ^{x^{2}} d x \\
& =\int_{0}^{1} x^{2} \sin \left(x^{3}\right) d x=-\left.\frac{1}{3} \cos \left(x^{3}\right)\right|_{0} ^{1}=\frac{1}{3}(1-\cos 1)
\end{aligned}
$$

6. Compute the following integral:

$$
\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y
$$

(Hint: First draw the domain of integration. Then use polar coordinates.)

- Solution. First draw the domain of integration R :

Then R can be expressed in polar coordinates as $0 \leq \theta \leq \pi / 4,0 \leq r \leq \sqrt{2}$. Then $d A=r d r d \theta$ and

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y & =\iint_{R} \sqrt{x^{2}+y^{2}} d A \\
& =\int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} r r d r d \theta=\int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} r^{2} d r d \theta \\
& =\left.\int_{0}^{\pi / 4} \frac{r^{3}}{3}\right|_{r=0} ^{r=\sqrt{2}} d \theta=\int_{0}^{\pi / 4} \frac{2 \sqrt{2}}{3} d \theta \\
& =\frac{2 \sqrt{2} \pi}{12}=\frac{\sqrt{2} \pi}{6}
\end{aligned}
$$

7. Compute the area of one leaf of the four leaved rose $r=a \sin (2 \theta)$.

- Solution. First draw a picture of one leaf:

Then the single leaf can be expressed in polar coordinates as $0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq$ $a \sin 2 \theta$, and the area is given by

$$
\begin{aligned}
\text { Area } & =\iint_{R} d A=\int_{0}^{\pi / 2} \int_{0}^{a \sin 2 \theta} r d r d \theta=\left.\int_{0}^{\pi / 4} \frac{r^{2}}{2}\right|_{0} ^{a \sin 2 \theta} d \theta \\
& =\frac{a^{2}}{2} \int_{0}^{\pi / 2} \sin ^{2} 2 \theta d \theta=\frac{a^{2}}{2} \int_{0}^{\pi / 2} \frac{1-\cos 4 \theta}{2} d \theta \\
& =\left.\frac{a^{2}}{4}\left(\theta-\frac{\sin 4 \theta}{4}\right)\right|_{0} ^{\pi / 2} \\
& =\frac{a^{2} \pi}{8}
\end{aligned}
$$

8. Compute the volume of the region in the first octant that is bounded by the coordinate planes and the plane $x+y+z=3$.

- Solution. The region is above the triangular region in the $x y$-plane bounded by the axes and the line $x+y=3$, and it is below the plane $z=3-x-y$. Thus, the volume is given by

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{3-y}(3-x-y) d x d y & =\left.\int_{0}^{3}\left(3 x-\frac{x^{2}}{2}-x y\right)\right|_{x=0} ^{x=3-y} d y \\
& =\int_{0}^{3}\left(9-3 y-\frac{9-6 y+y^{2}}{2}-\left(3 y-y^{2}\right)\right) d y \\
& =\int_{0}^{3}\left(\frac{9}{2}+\frac{y^{2}}{2}-3 y\right) d y=\left.\left(\frac{9}{2} y+\frac{y^{3}}{6}-\frac{3 y^{2}}{2}\right)\right|_{0} ^{3} \\
& =\frac{27}{2}+\frac{27}{6}-\frac{27}{2}=\frac{27}{6}=\frac{9}{2}
\end{aligned}
$$

9. Compute the volume of the finite region Q bounded by the graphs of $z=9-x^{2}-y^{2}$, $x^{2}+y^{2}=4$, and $z=0$. Use cylindrical coordinates.

- Solution. The volume of Q is

$$
\begin{aligned}
\iiint_{Q} d V & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{9-r^{2}} r d z d r d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{2} z\right|_{z=0} ^{z=9-r^{2}} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2}\left(9 r-r^{3}\right) d r d \theta \\
& =\left.\int_{0}^{2 \pi}\left(\frac{9 r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{2} d \theta=\int_{0}^{2 \pi} 14 d \theta \\
& =28 \pi
\end{aligned}
$$

10. Let Q be the region bounded below by the cone $z^{2}=x^{2}+y^{2}$ and above by the sphere of radius $\sqrt{2}$ and center at the origin. Compute the volume of Q using spherical coordinates.

- Solution. The cone and the sphere intersect when $x^{2}+y^{2}=z^{2}=2-x^{2}-x^{2}$ so $x^{2}+y^{2}=1$. In Q the z-coordinate is positive. The cone is defined in spherical coordinates by $\phi=\pi / 4$ and Q is symmetric around the z-axis. Thus, Q is defined in spherical coordinates by $0 \leq \rho \leq \sqrt{2}, 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 4$. Hence, the volume of Q is given by the integral

$$
\begin{aligned}
\iiint_{Q} d V & =\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left.\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \frac{\rho^{3}}{3} \sin \phi\right|_{0} ^{\sqrt{2}} d \theta d \phi=\frac{2 \sqrt{2}}{3} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \sin \phi d \theta d \phi \\
& =(2 \pi)\left(\frac{2 \sqrt{2}}{3}\right) \int_{0}^{\frac{\pi}{4}} \sin \phi d \phi=\left.(2 \pi)\left(\frac{2 \sqrt{2}}{3}\right)(-\cos \phi)\right|_{0} ^{\pi / 4} \\
& =\frac{4 \pi}{3}(\sqrt{2}-1)
\end{aligned}
$$

