
Section 5.4	Exponential and Logarithmic Equations

Recall the following definitions and properties from earlier in this chapter:

Definition of the Logarithmic Function



For ,  if and only if.

Logarithm Property of Equality




If a logarithmic equation can be written in the form , then.  Furthermore, if, then .

Properties of logarithms

Let , u and v represent positive numbers, and r be any real number.
1. 
The Product Rule for Logarithms is .	
2. 
The Quotient Rule for Logarithms is.	
3. 
The Power Rule for Logarithms is .	

Change of Base Formula



For any positive base  and for any positive real number u, then  where a is any positive number such that .  Note that the preferred choices for a are usually 10 and e since most calculators are capable of computing expressions containing common and natural logarithms.

Objective 1:	Solving Exponential Equations 



If the equation can be written in the form , then solve the equation.


If the equation can be written in the form where c is a constant not equal to any power of b:
1. Rewrite the equation in logarithmic form using the Definition of a Logarithmic Function.
2. Solve for the given variable and use the Change of Base Formula (base 10 or base e) to evaluate.



If the equation cannot be written in the form  or :
1.  Use the Logarithm Property of Equality to “take the log of both sides” (base 10 or base e).
2.  Use the Power Rule of Logarithms to “bring down” any exponents.
3.  Solve for the given variable.

Note that this last method can also be used to solve exponential equations of the form where c is a constant not equal to a power of b. 



Objective 2:	Solving Logarithmic Equations



If the equation can be written in the form , then solve the equation.


If the equation cannot be written in the form :
1. Use Properties of Logarithms to combine all logarithms and write as a single logarithm if needed.
2. Use the Definition of a Logarithmic Function to rewrite the equation in exponential form.
3. Solve for the given variable.
4. Check for any extraneous solutions. Verify that each solution results in the arguments of all logarithms in the original equation being greater than zero.

When solving logarithmic equations, it is important to always verify the solutions.  The process of solving logarithmic equations often produces extraneous solutions. 
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