Section 5.1a Exponential Functions

Objective 1: Understanding the Characteristics of Exponential Functions

Definition: An exponential function is a function of the form f(x)=5" where x is any real number
and b >0 such that b #1. The constant, b, is called the base of the exponential function.

Characteristics of Exponential Functions

For b>0, b#1, the exponential function with base b is defined by f(x)=5b".

The domain of f(x)=b"is (—O0,00) and the range is (0,00) . The graph of f(x)=>b" has one of the
following two shapes depending on the value of b:
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The graph of f(x)=b", b>0, b#1, has the following properties:
1. The graph intersects the y-axis at (0,1).

2. The graph contains the points (—1,%) and (1,b).

3. If b>1,then b* - o0 as x > and b* -0 as x — —o©.

If 0<b<l1,then b* >0 as x > and b* > as x > —o©.
4. The x-axis (y=0)is a horizontal asymptote.
5. The function is one-to-one.



The number e is an irrational number that is defined as the value of the expression (1+%)" asn

approaches infinity. The table below on the left below shows the values of the expression (1 +%)”

for increasingly large values of n. As the values of n get large, the value e (rounded to 6 decimal
places) is 2.718281.

The function f(x)=e" is called the natural exponential function. The graph below on the right

shows that the graph of f(x)=¢" lies between the graphs of f(x)=2" and f(x)=3" when
graphed on the same coordinate system.
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1 2

2 2.25

10 2.5937424601

100 2.7048138294

1000 2.7169239322

10,000 2.7181459268

100,000 2.7182682372

1,000,000 2.7182804693 2
10,000,000 | 2.7182816925 3
100,000,000 | 2.7182818149 el

Characteristics of the Natural Exponential Function
The Natural Exponential Function is the exponential function with base e and is defined as

f(x)=e€". The domain of f(x)=e"is (-o,0) and the range is (0,).
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The graph of f(x)=e¢" intersects the y-axis at (0,1).
The graph contains the points (—l,lj and (Le).
e

e —>wasx—>oand e >0 as x > —x©.
The line y =0 is a horizontal asymptote.

The function f(x)=e"is one-to-one.



Objective 2: Sketching the Graphs of Exponential Functions Using Transformations

The graph of f(x)=3" —1can be obtained by vertically shifting the graph of f(x)=3" down one
unit. The function f(x)=3" is graphed below on the left. It contains the points (—1,%) , (O,l)and

(1,3) and has horizontal asymptote y =0. To shift the graph of this function down one unit,
subtract 1 from each of the y-coordinates of the points on the graph. The resulting graph of

f(x)=3% -1, shown below on the right, contains the points (—1,—%) , (0,0)and (1,2) and has

horizontal asymptote y =—1. The domain of f(x)=3"—1is (—00,00) and the range is (—1,00).
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Objective 3: Solving Exponential Equations by Relating the Bases

The function f(x) =b" is one-to-one because the graph of f passes the horizontal line test.

Therefore, if the bases of an exponential equation of the form 5" =b" are the same, then the
exponents must also be the same.

To solve an exponential equation using the Method of Relating the Bases, first rewrite the equation
in the form b* =b" . Then u=v.

Note that not all exponential equations can be written in the form »* =" . Other methods for
solving exponential equations will be discussed in Section 5.4.
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