Section 4.6 Rational Functions and Their Graphs

Definition: A **rational function** is a function of the form $f(x) = \frac{g(x)}{h(x)}$ where *g* and *h* are polynomial functions such that $g(x)$ is any polynomial expression except 0 and the degree of $h(x)$ is greater than zero. If $h(x) = c$ where *c* is a real number not equal to zero, then we consider the function $f(x) = \frac{g(x)}{h(x)} = \frac{g(x)}{c}$ to be a polynomial.

Objective 1: Finding the Domain and Intercepts of Rational Functions

The domain of a rational function is the set of all real numbers *x* such that $h(x) \neq 0$.

If $f(x)$ has a *y*-intercept, it can be found by evaluating $f(0)$ provided that $f(0)$ is defined. If $f(x)$ has any *x*-intercepts, they can be found by solving the equation $g(x) = 0$ (provided that *g* and *h* do not share a common factor).

Objective 2: Identifying Vertical Asymptotes

*Definition***:** The vertical line $x = a$ is a **vertical asymptote** of a function $y = f(x)$ if *at least* one of the following occurs:

- 1. $f(x) \rightarrow \infty$ as $x \rightarrow a^+$
- 2. $f(x) \rightarrow -\infty$ as $x \rightarrow a^+$
- 3. $f(x) \rightarrow \infty$ as $x \rightarrow a^-$
- 4. $f(x) \rightarrow -\infty$ as $x \rightarrow a^-$

The figures below illustrate each of these cases.

A rational function of the form $f(x) = \frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ have no common factors will have a vertical asymptote at $x = a$ if $h(a) = 0$.

It is essential to divide out any common factors before locating the vertical asymptotes. **If there is an** *x-***intercept near the vertical asymptote, it is essential to choose a test value that is between the** *x-***intercept and the vertical asymptote.**

Objective 3: Identifying Horizontal Asymptotes

Definition: A horizontal line $y = H$ is a **horizontal asymptote** of a function *f* if the values of $f(x)$ approach some fixed number *H* as the values of *x* approach ∞ or $-\infty$.

In Figure 1 above on the left, the line $y = -1$ is a horizontal asymptote because the values of $f(x)$ approach −1 as *x* approaches −∞ .

In Figure 2 above in the middle, the line $y = 3$ is a horizontal asymptote because the values of $f(x)$ approach 3 as x approaches $\pm \infty$.

In Figure 3 above on the right, the line $y = 2$ is a horizontal asymptote because the values of $f(x)$ approach 2 as *x* approaches $\pm \infty$.

Properties of Horizontal Asymptotes of Rational Functions

- Although a rational function can have many vertical asymptotes, it can have at most one horizontal asymptote.
- The graph of a rational function will never intersect a vertical asymptote but may intersect a horizontal asymptote.
- A rational function $f(x) = \frac{g(x)}{h(x)}$ that is written in lowest terms (all common factors of the

numerator and denominator have been divided out) will have a horizontal asymptote whenever the degree of $h(x)$ is greater than or equal to the degree of $g(x)$.

Finding Horizontal Asymptotes of a Rational Function

Let $f(x) = \frac{g(x)}{h(x)} = \frac{a_n x + a_{n-1} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac{a_{n-2} x}{h(x)} = \frac{a_{n-1} x}{h(x)} = \frac$ 1^{λ} τv_{m-2} $\tau \cdots \tau v_1$ τv_0 1^{1} α α^{n-2} $f(x) = \frac{g(x)}{h(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2}}{b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2}}$ -1^{λ} τv_{m-1} -1 α α ⁿ⁻ $=\frac{g(x)}{h(x)}=\frac{a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots+a_1x+a_2}{b_mx^m+b_{m-1}x^{m-1}+b_{m-2}x^{m-2}+\cdots+b_1x+a_2x^{m-2}}$ \cdots n^{λ} τu_{n-1}^{λ} τu_n^{μ} m^{λ} τv_{m-1}^{μ} τv_m^{μ} $n \rightarrow \infty$ ⁿ⁻¹ $\rightarrow \infty$ ⁿ $f(x) = \frac{g(x)}{h(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} + \dots + b_1 x + b_0}, \ a_n \neq 0, \ b_m \neq 0$ where *f* is written in

lowest terms, *n* is the degree of *g*, and *m* is the degree of *h*.

- If $m > n$, then $y = 0$ is the horizontal asymptote.
- If $m = n$, then the horizontal asymptote is $y = \frac{a_n}{n}$ *m* $y = \frac{a_n}{b_m}$, the ratio of the leading coefficients.
- If $m < n$, then there are no horizontal asymptotes.

Properties of the graphs of $f(x) = \frac{1}{x}$ and $f(x) = \frac{1}{x^2}$

- 1. Domain: $(-\infty, 0) \cup (0, \infty)$
- 2. Range of $f(x) = \frac{1}{x}$: $(-∞, 0) ∪ (0, ∞)$ Range of $f(x) = \frac{1}{x^2}$: $(0, \infty)$
- 3. No intercepts
- 4. Vertical Asymptote: $x = 0$
- 5. Horizontal Asymptote: $y = 0$
- 6. $f(x) = \frac{1}{x}$ is an odd function. Its graph is symmetric about the origin and $f(-x) = -f(x)$. $f(x) = \frac{1}{x^2}$ is an even function. Its graph is symmetric about the *y*-axis and $f(-x) = f(x)$.

Objective 5: Sketching Rational Functions Having Removable Discontinuities

A rational function $f(x) = \frac{g(x)}{h(x)}$ may sometimes have a "hole" in its graph. In calculus, these "holes" are called **removable discontinuities.** Removable discontinuities occur when $g(x)$ and $h(x)$ share a common factor.

Objective 7: Sketching Rational Functions

Steps for Graphing Rational Functions of the Form $f(x)$ = $\frac{g(x)}{h(x)}$

- 1. Find the domain.
- 2. If $g(x)$ and $h(x)$ have common factors, divide out all common factors, determine the coordinates of any removable discontinuities, and rewrite *f* in lowest terms.
- 3. Check for symmetry. If $f(-x) = -f(x)$, then the graph of $f(x)$ is *odd* and thus symmetric about the origin. If $f(-x) = f(x)$, then the graph of $f(x)$ is *even* and thus symmetric about the *y*-axis.
- 4. Find the *y*-intercept, if any, by evaluating $f(0)$.
- 5. Find the *x*-intercept(s), if any, by finding the zeros of the numerator of *f*, being careful to use the new numerator if a common factor has been removed.
- 6. Find the vertical asymptotes by finding the zeros of the denominator of *f*, being careful to use the new denominator if a common factor has been removed. Use test values to determine the behavior of the graph on each side of the vertical asymptotes.
- 7. Determine if the graph has any horizontal asymptotes.
- 8. Plot points, choosing values of *x* between each intercept and choosing values of *x* on either side of the all vertical asymptotes.
- 9. Complete the sketch.