Section 4.6	Rational Functions and Their Graphs






Definition:  A rational function is a function of the form  where g and h are polynomial functions such that is any polynomial expression except 0  and the degree of is greater than zero.  If   where c is a real number not equal to zero, then we consider the function  to be a polynomial.
Objective 1:  Finding the Domain and Intercepts of Rational Functions


The domain of a rational function is the set of all real numbers x such that .  




If has a y-intercept, it can be found by evaluating provided that is defined.


If  has any x-intercepts, they can be found by solving the equation(provided that g and h do not share a common factor).

Objective 2:  Identifying Vertical Asymptotes



Definition:  The vertical line is a vertical asymptote of a function if at least one of the following occurs: 
1. 

2. 
 
3. 
 
4. 
 
The figures below illustrate each of these cases.
[image: ][image: ]	[image: ][image: ]





A rational function of the form where and have no common factors will have a vertical asymptote at  if .
[image: warning] It is essential to divide out any common factors before locating the vertical asymptotes.
[image: warning] If there is an x-intercept near the vertical asymptote, it is essential to choose a test value that is between the x-intercept and the vertical asymptote. 

Objective 3:  Identifying Horizontal Asymptotes





Definition:  A horizontal line  is a horizontal asymptote of a function f if the values of approach some fixed number H as the values of x approach  or .
[image: ]	[image: ]	[image: ]	





In Figure 1 above on the left, the line  is a horizontal asymptote because the values ofapproach as x approaches .



In Figure 2 above in the middle, the line  is a horizontal asymptote because the values ofapproach 3 as x approaches . 



In Figure 3 above on the right, the line  is a horizontal asymptote because the values ofapproach 2 as x approaches .
Properties of Horizontal Asymptotes of Rational Functions

· Although a rational function can have many vertical asymptotes, it can have at most one horizontal asymptote.  
· The graph of a rational function will never intersect a vertical asymptote but may intersect a horizontal asymptote.  
· 


A rational function  that is written in lowest terms (all common factors of the numerator and denominator have been divided out) will have a horizontal asymptote whenever the degree of is greater than or equal to the degree of .

Finding Horizontal Asymptotes of a Rational Function



Let ,   where f is written in lowest terms, n is the degree of g, and m is the degree of h.

· 

If , then  is the horizontal asymptote.
· 

If , then the horizontal asymptote is , the ratio of the leading coefficients.
· 
If , then there are no horizontal asymptotes. 


Objective 4:  Using Transformations to Sketch the Graphs of Rational Functions



The graphs of  and 
[image: A graph of f of x equals 1 divided by x shows a hyperbola with a branch in quadrant 1 (ends pointing top and right) and the other in quadrant 3 (ends pointing left and bottom).]		[image: A graph of f of x equals fraction numerator 1 divided by denominator x squared end fraction shows 2 curves mirrored about the y-axis with the one in quadrant 1 having ends pointing top and right, and the one in quadrant 2 having ends pointing top and left.]


Properties of the graphs of  and 
1. 
Domain:  
2. 

Range of :   


Range of :   
3. No intercepts
4. 
Vertical Asymptote:  
5. 
Horizontal Asymptote: 
6. 



is an odd function. Its graph is symmetric about the origin and .is an even function.  Its graph is symmetric about the y-axis and .


Objective 5:  Sketching Rational Functions Having Removable Discontinuities 



A rational function may sometimes have a “hole” in its graph.  In calculus, these “holes” are called removable discontinuities.   Removable discontinuities occur when and share a common factor.

Objective 7:	Sketching Rational Functions


Steps for Graphing Rational Functions of the Form
1. Find the domain.
2. 

If and have common factors, divide out all common factors, determine the coordinates of any removable discontinuities, and rewrite f in lowest terms.
3. Check for symmetry.


If , then the graph of is odd and thus symmetric about the origin.	


If  , then the graph of is even and thus symmetric about the y-axis.
4. 
Find the y-intercept, if any, by evaluating.
5. Find the x-intercept(s), if any, by finding the zeros of the numerator of f, being careful to use the new numerator if a common factor has been removed.
6. Find the vertical asymptotes by finding the zeros of the denominator of f, being careful to use the new denominator if a common factor has been removed.  Use test values to determine the behavior of the graph on each side of the vertical asymptotes.
7. Determine if the graph has any horizontal asymptotes.
8. Plot points, choosing values of x between each intercept and choosing values of x on either side of the all vertical asymptotes.
9. Complete the sketch. 
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