Section 3.6	One-to-one Functions; Inverse Functions
Objective 1:  Understanding the Definition of a One-to-one Function



Definition:  A function f is one-to-one if for any values in the domain of f, .



Interpretation:  For  to be a function, we know that for each x in the domain there exists one and only one y in the range.  For to be a one-to-one function, both of the following must be true:  for each x in the domain there exists one and only one y in the range, AND for each y in the range there exists one and only one x in the domain.

Objective 2:  Determining if a Function is One-to-one Using the Horizontal Line Test

[image: ]		[image: ]


The Horizontal Line Test	
If every horizontal line intersects the graph of a function f at most once, then f is one-to-one.


 Objective 3:  Understanding and Verifying Inverse Functions

Every one-to-one function has an inverse function.




Definition:  Let f be a one-to-one function with domain A and range B.  Then  is the inverse function of f with domain B and range A.  Furthermore, if  then .

[image: ]




[image: warning] Do not confuse  with .  The negative 1 in  is NOT an exponent!


Inverse functions “undo” each other.
 
Composition Cancellation Equations:  


 for all x in the domain of 

 for all x in the domain of f


Objective 4:  Sketching the Graphs of Inverse Functions



The graph of  is a reflection of the graph of f about the line .  

If the functions have any points in common, they must lie along the line .

[image: ]	 [image: ]


Objective 5:  Finding the Inverse of a One-to-one Function



We know that if a point is on the graph of a one-to-one function, then the point is on the graph of its inverse function.
 


To find the inverse of a one-to-one function, replace  with y, interchange the variables x and y, and then solve for y.  This is the function .

Inverse Function Summary
1. 
The inverse function exists if and only if the function f  is one-to-one.
2. 

The domain of f is the same as the range of  and the range of f is the same as the domain of .
3. 
To verify that two one-to-one functions f and g are inverses of each other, use the composition cancellation equations to show that .
4. 




The graph of  is a reflection of the graph of f about the line .  That is, for any point that lies on the graph of f, the point  must lie on the graph of .
5. 

To find the inverse of a one-to-one function, replace  with y, interchange the variables x and y, and then solve for y.  This is the function .
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