Section 1.6b Other Types of Equations

Objective 2: Solving Equations that are Quadratic in Form ("Disguised Quadratics")

Quadratic equations of the form $ax^2 + bx + c = 0$, $a \neq 0$ are relatively straight-forward to solve since we know several methods for solving quadratics. Sometimes equations that are not quadratic can be made into a quadratic equation by using a **substitution**. Equations of this type are said to be *quadratic in form* or "disguised quadratics". These equations typically have the form $au^2 + bu + c = 0, a \neq 0$ after an appropriate substitution.

Original Equation	Identify <i>u</i> .	Find u^2 .	Make the substitutions.
$2x^4 - 11x^2 + 12 = 0$	$u = x^2$	$u^2 = (x^2)^2 = x^4$	$2u^2 - 11u + 12 = 0$
$\left(\frac{1}{x-2}\right)^2 + \frac{3}{x-2} - 15 = 0$	$u = \frac{1}{x - 2}$	$u^2 = \left(\frac{1}{x-2}\right)^2$	$u^2 + 3u - 15 = 0$
$x^{\frac{2}{3}} - 9x^{\frac{1}{3}} + 8 = 0$	$u = x^{\frac{1}{3}}$	$u^2 = (x^{\frac{1}{3}})^2 = x^{\frac{2}{3}}$	$u^2 - 9u + 8 = 0$
$3x^{-2} - 5x^{-1} - 2 = 0$	$u = x^{-1}$	$u^2 = (x^{-1})^2 = x^{-2}$	$3u^2 - 5u - 2 = 0$