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Review: Where we stand, now:

Let A be an Archimedean /-group, and suppose e € AT.

We have defined:
(1) the “general Yosida locale” YA and the “topped Yosida locale” Y(A,e).

(2) for each a € A, the frame morphism ®(a,e) : R — Y(A, e), and hence the map:
P(,e): A>RY(Ae).

In the last lecture, we indicated some of the argument needed to show that R Y(A, e)
is an ¢-group. We leave the full verification to the audience. (See
" Madden-1992-frames.pdf” for hints.)

Comment on notation. We may write VA instead of V(A, e) and ®.(a) instead of
®(a,e). The map in (2), above, may be written ®. : A > R V.A.

The next step (cf. Lecture 7, slide 8, item 4) in our proof-sketch of the localic Yosida
Theorem (constructive version) is to show that ®¢(a + b) = ®c(a) + Pe(b) for all
a,b e A. One must also verify that ®. preserves v, but this is similar to (and easier
than) showing that ®. preserves +.

The classical Yosida Representation starts with algebraic data (maximal ideals) and
then introduces a topology. The localic version inverts this: it starts with a localic
construction, then shows that the algebraic structures carry through.
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What we need to prove

Pointwise addition of functions is described by the following diagram:

fxg +

X 24 XxX R,
X b (%, ) ¥ (f(x), g(x)) —— f(x) + g(x).

R xR

The corresponding operation in frames is described thus (where ¢,v : R — O):
PR
O+ Y 0Q0+—*27 = RIR<+—* R,
V{d(st)ayw)] -} & V{o(,)@v(u,v)| -} S V{(s:)®(u,v)| -+ } — (p,a),

where - - - standsfor p < s+ u&t+v<gqg

To show that ®.(a + b) = ®.(a) + ®.(b), we must show that:
d.(a+ b)(p,q) = \/{¢(a(st)/\¢(b)(uv)\p s+u&t+v<gqg}

The LHS is:
ve((a+b=pe)* a(ge—(a+b)7).
The RHS is:
et ot ot oyt
in\y/EA{ye((a se)" A (te — a) )Aye((b ue)” A (ve — b) )|p<s+u&t+v<q}4

Note: (\/ A) /\(\/B):v{(\/A)Ab‘beB}:\/{a/\b|aeA,beB}.
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What we need to prove (continued)
It suffices to show:
() ye(a+b—pe)*) = \/{re((@a—se)* n(b—ue)*)| p<s+u},
(i) ve((@e—(a+b)*) = \/{ve(lte—a)" n(ve=b)")| t+v<aq}.

The > inequalities follow from:
Lemma. Any /-group satisfies the identity: (x +y)T = xt A yt.

Proof. (x+y)*" = (12)(x+y) = (}2)Ix + y|.
[xT Ayt = (R (x+y) = () [(x —y) A (y =x)] = =(Y2)[x — yl. U

We include the proof because it illustrates a strategy that we use again (with g and gp, next slide).
To show the < inequalities, it suffices to show:
(i) [AL)(a+b—pe)T Anele RU{(a—se)t A (b—ue)t ne|s+u=p}, and
(ii) [(12)(ge — (a+ b))t Ane]le RU{(te—a)t A(ve—b)T re|t+v<gqg}
Here, RU X denotes the set of relative-uniform limits of sequences of elements of X. Note that including the “Ae"

is permissible, because ye(e) = Ty, and ye(a A b) = ye(a) A ye(b). The factor (1/2) is harmless, because

ve((12) ) = ye(a).
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Proof of (ii)

Suppose A is a divisible abelian ¢-group, a,be A, e€ AT, g€ Q, and ne N. Let

n2

g:=3(ge—(a+b),and g:= \/ [(Ga+4i)e—a)~((3a—f)e-b)].

j=—n2
_ =1 — A _ (1 i _(lg_ i
e—gn=3@e—@+b)+ A [(a—(3a+L)e)v (b—(3a—1)e)]
i=—n2
nz n2
= /\ [B(a—b)—ie)v (A(b—a)+ ie)] = /\ [$(a—b) — Le|l. Menscht
2

i=—n i=—n2

Lemma. If f,w € Aand 0 < w, then ATL_ |f —iw| < (|f| — mw) v w. (“Madden-1992-frames.pdf”, 4.4.)

Lemma. If x,w € At (x—n W)Jr Aw< %x. (“Madden-1992-frames.pdf”, 4.3.) ‘

(g"rne)—(gf re)<(g—gn)T ne<i(ila—blve)

This concludes the proof of (ii). ‘
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Remarks on a key lemma.

Lemma. If f,w € A and 0 < w, then A\

Here are graphs of the functions in the lemma when w = 1, f = x> — 4x (in
gray) and m takes the values 1, 5 and 40. The LHS is depicted in blue, and the

RHS in orange.

\
. |
AN |
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Summary

We have now completed the proof sketch of the following theorem:

Localic Yosida. Suppose A is an archimedean /-group, and e € A™. Let
Ye : AT — V. A be the frame freely generated by AT modulo relations (/1)-(l),
(Y) and ye(e) = T. Let & : A —> R V.A be defined by

®c(a)(p,q) = ye ((a—pe)" A (ge—a)"), pqeQ

Then Y.A regular Lindelof and @, is an ~homomorphism.
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What is ker .7 (Cf. Lecture 3, slides 5 and 8)

Proposition. Suppose A is an archimedean /-group and a,e € AT. The
following are equivalent:

(i) a € ker ®g; (i) ye(a) = L; (iiiy ane=0.
Remark. Suppose ¢ : R — O. Then

T, ifp<0<aq;
= fi 1] = .
¢=0 < forall p,geQ, ¢(p,q) {L, otherwise

T, ifp<O;

Proof. (i = ii) ®c(a) = 0 implies ye ((a — pe)t) = {J_ otherwise "

Thus ye(a) = ye ((a—0e)t) = L.

(il = iii) ye(a) = y(e) A y(a) = y(e A a). Since A is archimedean, 0 < b & y(b) =0

iff b=0. (Caution/Question. “Archimedean” has more than one constructive interpretation. What are we using, here?)

(fii = i) Suppose a A e = 0. Then, ye(a) = ye(a A €) = L. Also,

_ 4+ _Jav —pe if p<O; _ o+ _ Jae if g > 0;
(a — pe) a fo<p and (ge — a) 0, ifg<o0’ Thus
T, ifp<O; T, ifg>0;
— +) — ’ _ )t — ) ] O
ve ((a—pe)T) {L, f0<p’ and ye ((qe — a)T) {L, g <0
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Reprise of Lecture 3: Maximal /f-ideals in Archimedean case

Definition. For ac A, a* := {be A|0=|a| A |b|}. We say a is a weak unit
if 0 < aand at = {0}.

Theorem. Suppose A is archimedean, a,be A and 0 < a < b. Then a* is the
intersection of the values M of a such that b e M*(:= (M, a)).

Corollary. If A is archimedean, then ’ at is the intersection of the values of a |,
and fin, b is dense in Y(A, a) for all b € A. Tthis yields classical version of proposition on previous slide.

Proof. If a¢ M then at € M, so a* < (] Val(A, a). To prove the opposite
inclusion, suppose 0 < x ¢ a=. Then, 0 < x A a. Let d := x A a. Note that

d < b. Since A is archimedean and 0 < d, we may—and do—pick n € N such
that nd € b. Let

h:=b—(nd A b), and g:=nd— (nd A b).

Note that g A h = 0. Pick P maximal missing g. Since P is prime, h e P.
Also, P does not contain b (otherwise, it would contain g, because
0<nd<nband (nd A b) <b). Enlarge P to a value M of b. Since b¢ M
but he M, nd A b¢ M, so d ¢ M, so neither x nor a is in M. Clearly
ae{M,by=M* so M is a value of a.

O
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What's next?

1. Suppose e, f € AT. What is the relationship between ®. and ®?

2. Some thoughts about representations of Arch.
3. Examples of some representations:

> Free divisible abelian Z-groups

> Finitely-supported functions on N

> Conrad-Martinez example

> Countably-supported functions on an uncountable set
>

Hager's Unusual Epicomplete Archimedean /-group
("Hager-2015-unusual.pdf")
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