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Review: Where we stand, now:

Let A be an Archimedean `-group, and suppose e P A`.

We have defined:

(1) the “general Yosida locale” YA and the “topped Yosida locale” YpA, eq.
(2) for each a P A, the frame morphism Φpa, eq : RÑ YpA, eq, and hence the map:

Φp , eq : AÑ RYpA, eq.

In the last lecture, we indicated some of the argument needed to show that RYpA, eq
is an `-group. We leave the full verification to the audience. (See
”Madden-1992-frames.pdf” for hints.)

Comment on notation. We may write YeA instead of YpA, eq and Φepaq instead of
Φpa, eq. The map in (2), above, may be written Φe : AÑ RYeA.

The next step (cf. Lecture 7, slide 8, item 4) in our proof-sketch of the localic Yosida
Theorem (constructive version) is to show that Φepa` bq “ Φepaq ` Φepbq for all
a, b P A. One must also verify that Φe preserves _, but this is similar to (and easier
than) showing that Φe preserves `.

The classical Yosida Representation starts with algebraic data (maximal ideals) and
then introduces a topology. The localic version inverts this: it starts with a localic
construction, then shows that the algebraic structures carry through.
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What we need to prove

Pointwise addition of functions is described by the following diagram:

X X ˆ X Rˆ R R,
x px, xq pf pxq, gpxqq f pxq ` gpxq.

∆ fˆg `

The corresponding operation in frames is described thus (where φ, γ : RÑ O):

O O bO RbR R,
Ž

tφps,tq^γpu,vq| ¨¨¨ u
Ž

tφps,tqbγpu,vq| ¨¨¨ u
Ž

t ps,tqbpu,vq| ¨¨¨ u pp,qq,

∇ φb γ α

where ¨ ¨ ¨ stands for p ď s ` u & t ` v ď q.

To show that Φepa ` bq “ Φepaq ` Φepbq, we must show that:

Φepa ` bqpp, qq “
ł

tΦepaqps, tq ^ Φepbqpu, vq | p ď s ` u & t ` v ď q u.

The LHS is:

ye
´

pa ` b ´ peq` ^ pqe ´ pa ` bqq`
¯

.

The RHS is:
ł

in YeA

!

ye
´

pa ´ seq` ^ pte ´ aq`
¯

^ ye
´

pb ´ ueq` ^ pve ´ bq`
¯ ˇ

ˇ

ˇ
p ď s ` u & t ` v ď q

)

.

Note: p
Ž

Aq ^ p
Ž

Bq “
Ž

!

p
Ž

Aq ^ b
ˇ

ˇ

ˇ
b P B

)

“
Ž

t a ^ b | a P A, b P Bu.
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What we need to prove (continued)

It suffices to show:

piq ye
`

pa` b ´ peq`
˘

“
ł

 

ye
`

pa´ seq` ^ pb ´ ueq`
˘

| p ď s ` u
(

,

piiq ye
`

pqe ´ pa` bqq`
˘

“
ł

 

ye
`

pte ´ aq` ^ pve ´ bq`
˘

| t ` v ď q
(

.

The ě inequalities follow from:

Lemma. Any `-group satisfies the identity: px ` yq` ě x` ^ y`.

Proof. px ` yq` ´ p1{2qpx ` yq “ p1{2q|x ` y |.
“

x` ^ y`
‰

´ p1{2qpx ` yq “ p1{2q rpx ´ yq ^ py ´ xqs “ ´p1{2q|x ´ y |.

We include the proof because it illustrates a strategy that we use again (with g and gn , next slide).

To show the ď inequalities, it suffices to show:

piq rp1{2qpa` b ´ peq` ^ es P RUt pa´ seq` ^ pb ´ ueq` ^ e | s ` u “ p u, and

piiq rp1{2qpqe ´ pa` bqq` ^ es P RUt pte ´ aq` ^ pve ´ bq` ^ e | t ` v ď q u.

Here, RU X denotes the set of relative-uniform limits of sequences of elements of X . Note that including the “^e”

is permissible, because yepeq “ JYeA, and yepa ^ bq “ yepaq ^ yepbq. The factor p1{2q is harmless, because

yepp1{2q aq “ yepaq.
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Proof of piiq
Suppose A is a divisible abelian `-group, a, b P A, e P A`, q P Q, and n P N. Let

g :“ 1
2 pq e ´ pa ` bqq , and gn :“

n2
ł

i“´n2

“``

1
2 q `

i
n

˘

e ´ a
˘

^
``

1
2 q ´

i
n

˘

e ´ b
˘‰

.

g ´ gn “
1
2 pq e ´ pa ` bqq `

n2
ľ

i“´n2

“`

a ´
`

1
2 q `

i
n

˘

e
˘

_
`

b ´
`

1
2 q ´

i
n

˘

e
˘‰

“

n2
ľ

i“´n2

“`

1
2 pa ´ bq ´ i

n e
˘

_
`

1
2 pb ´ aq ` i

n e
˘‰

“

n2
ľ

i“´n2

ˇ

ˇ

1
2 pa ´ bq ´ i

n e
ˇ

ˇ. Mensch!

Lemma. If f ,w P A and 0 ď w , then
Źm

i“´m |f ´ i w | ď p|f | ´ mwq _ w . (“Madden-1992-frames.pdf”, 4.4.)

0 ď g ´ gn ď
`

1
2 |a ´ b| ´ n e

˘

_ 1
n e

ď
`

1
2 |a ´ b| ´ n e

˘`
_ 1

n e

pg ´ gnq
`
^ e ď

´

`

1
2 |a ´ b| ´ n e

˘`
^ e

¯

_ 1
n e

Lemma. If x,w P A`, px ´ n wq` ^ w ď 1
n
x . (“Madden-1992-frames.pdf”, 4.3.)

pg` ^ eq ´ pg`n ^ eq ď pg ´ gnq
`
^ e ď 1

n

`

1
2 |a ´ b| _ e

˘

This concludes the proof of piiq.
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Remarks on a key lemma.

Lemma. If f ,w P A and 0 ď w , then
Źm

i“´m |f ´ i w | ď p|f | ´mwq _ w .

Here are graphs of the functions in the lemma when w “ 1, f “ x3
´ 4x (in

gray) and m takes the values 1, 5 and 40. The LHS is depicted in blue, and the
RHS in orange.
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Summary

We have now completed the proof sketch of the following theorem:

Localic Yosida. Suppose A is an archimedean `-group, and e P A`. Let
ye : A` Ñ YeA be the frame freely generated by A` modulo relations pI1q-pI4q,
pY q and yepeq “ J. Let Φe : AÑ RYeA be defined by

Φepaqpp, qq “ ye
`

pa´ peq` ^ pqe ´ aq`
˘

, p, q P Q.

Then YeA regular Lindelöf and Φe is an `-homomorphism.
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What is ker Φe? (Cf. Lecture 3, slides 5 and 8)

Proposition. Suppose A is an archimedean `-group and a, e P A`. The
following are equivalent:

piq a P ker Φe ; piiq yepaq “ K; piiiq a^ e “ 0.

Remark. Suppose φ : RÑ O. Then

φ “ 0 ô for all p, q P Q, φpp, qq “

#

J, if p ă 0 ă q;

K, otherwise
.

Proof. pi ñ iiq Φepaq “ 0 implies ye
`

pa´ peq`
˘

“

#

J, if p ă 0;

K, otherwise
.

Thus yepaq “ ye
`

pa´ 0eq`
˘

“ K.

pii ñ iiiq yepaq “ ypeq ^ ypaq “ ype ^ aq. Since A is archimedean, 0 ď b & ypbq “ 0
iff b “ 0. (Caution/Question. “Archimedean” has more than one constructive interpretation. What are we using, here?)

piii ñ iq Suppose a^ e “ 0. Then, yepaq “ yepa^ eq “ K. Also,

pa´ peq` “

#

a_´pe, if p ă 0;

a, if 0 ď p
, and pqe ´ aq` “

#

qe, if q ą 0;

0, if q ď 0
. Thus

ye
`

pa´ peq`
˘

“

#

J, if p ă 0;

K, if 0 ď p
, and ye

`

pqe ´ aq`
˘

“

#

J, if q ą 0;

K, if q ď 0
.
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Reprise of Lecture 3: Maximal `-ideals in Archimedean case

Definition. For a P A, aK :“ t b P A | 0 “ |a| ^ |b| u. We say a is a weak unit
if 0 ď a and aK “ t0u.

Theorem. Suppose A is archimedean, a, b P A and 0 ď a ď b. Then aK is the
intersection of the values M of a such that b P M˚

p:“ xM, ayq.

Corollary. If A is archimedean, then aK is the intersection of the values of a ,
and finu b is dense in Y pA, aq for all b P A. Òthis yields classical version of proposition on previous slide.

Proof. If a R M then aK Ď M, so aK Ď
Ş

ValpA, aq. To prove the opposite
inclusion, suppose 0 ď x R aK. Then, 0 ă x ^ a. Let d :“ x ^ a. Note that
d ď b. Since A is archimedean and 0 ă d , we may—and do—pick n P N such
that n d ę b. Let

h :“ b ´ pn d ^ bq, and g :“ n d ´ pn d ^ bq.

Note that g ^ h “ 0. Pick P maximal missing g . Since P is prime, h P P.
Also, P does not contain b (otherwise, it would contain g , because
0 ă n d ď n b and pn d ^ bq ď b). Enlarge P to a value M of b. Since b R M
but h P M, n d ^ b R M, so d R M, so neither x nor a is in M. Clearly
a P xM, by “ M˚, so M is a value of a.
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What’s next?

1. Suppose e, f P A`. What is the relationship between Φe and Φf ?

2. Some thoughts about representations of Arch.

3. Examples of some representations:
§ Free divisible abelian `-groups
§ Finitely-supported functions on N
§ Conrad-Martinez example
§ Countably-supported functions on an uncountable set
§ Hager’s Unusual Epicomplete Archimedean `-group

(“Hager-2015-unusual.pdf”)
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