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Definitions

Assume A is an abelian /-group and a,a; € A and s€ A™.
Definition. We say, a is an s-uniform limit of { a; | i € N} or {a;}
converges to a with regulator s (in symbols, a; — a) if:

Vme N3N, € Nsuch that Vi > Ny, : m|la— a;| <s.
We write a; 1s a to mean a; < a;41 for all i and a; —; a.

Definition. We say that a is a relative-uniform limit (or r.u.-limit)
of {a; |e N}, if ais an s-uniform limit of { a; |e N} for some s.

Definition. We say a subset B < A is r.u.-closed if a€ B
whenever a is an r.u.-limit of some sequence {a;} < B.

See: A. W. Hager, Math. Slovaca 65 (2015), No. 2, 343-358.
(called “Hager-2015b.pdf" in our Dropbox library)
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R.U.-Closed /-Ideal = Archimedean Kernel

Exercise. Suppose | € A is an (-ideal. The following are equivalent:
(i) I'is r.u.-closed.
(ii) 1T is r.u.-closed.

(iif) For any increasing sequence 0 < a; < --- of elements of /, if ais an
r.u.-limit of {a;}, then a€ /.

Proposition. A// is archimedean iff [ is r.u.-closed

Proof. (=) Suppose A/l is archimedean. Given {a;} < I, and a; 15 a, we must
show a € I. For each me N, m|a — aj| < s for large i. Thus, for each me N,
m|a+ 1| < s+ [. By the archimedean hypothesis, a+/ =0+ 1/,so a€e [.

(«<). Suppose A/l is not archimedean. Then, there are a,s € AT\l such that
m(a+ 1) < s+ for all me N. This implies mla— 0| = ma < 2s for all me N,
and hence that that 0 —s a. Therefore, / is not r.u.-closed. O

Note the synonyms: r.u.-closed (-ideal = archimedean kernel
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Facts about r.u.-closed ideals

Lemma 1. Suppose A is archimedean. If a; 15 ain A, then ais
the supremum of {a; | ie N }.

Proof. If for some i, a; & a, then (a; — a)* >0, and for all j > i,

l|aj —a| = (aj — a)t > (ai — a)T. By the archimedean hypothesis, there is m
such that m(a; — a)™ & s, contrary to the assumption that a; 15 a. Thus, a is
an upper bound. If a; < b € a for all i € N, then m(a — b) < s for some m, so
m(a— aj) € s for all i. O

Lemma 2. Suppose ¢ : A — B is an {-group morphism. If
ai —s ain A, then ¢(a;) —4s) ¢(a) in B.
Proof. If m|aj — a|] < s, then m|¢(a;) — ¢(a)] < o(s). O

Comment. Lemma 2 shows that ) (defined below) is a functor.
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An Example and a Comment

Example 1. Let A be the ¢-group of all (continuous & finitely) piecewise linear
R-valued functions on [0,1]". For any element a € A, let Z(a) denote the
zero-set of a. Then (@) = { be A| Z(a) < Z(b) }, since any non-negative PL
function that vanishes on Z(a) is bounded above by a multiple of |a|. The map
A — A/{a) is equivalent to the restriction map b — b|z(,). In particular, (a) is
r.u.-closed (an archimedean kernel). An element a€ AT is a weak unit iff Z(a)
has dimension < n.

Comment. R.u.-convergence plays an important role in the theory of
archimedean /-groups. Let A be an archimedean ¢-group. We say {a;} € A is
s-Cauchy if

VmeN, Ny : i,j > Nn = m|a; — aj| <s.

We say A is r.u.-complete if for all s € AT, every s-Cauchy sequence in A has
an s-uniform limit in A.

Theorem. (Veksler-Ball-Hager) The r.u.-complete archimedean (-groups
form the strongest essential monoreflective subcategory of Arch. Moreover,
an embedding f : A — B is isomorphic to the reflection rp : A — rA if and
only if B is r.u.-complete and f is epic and majorizing.
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ArchK A

The set of all archimedean kernels of A is denoted ArchK A.

Fact. ArchK A'is a complete lattice. For suppose { Kj | j € J} S ArchK A. Then [[{ A/K; | je J}is
archimedean, and (\{ K; | j € J } is the kernel of a — (a + Kj) : A = [[{ A/K; | j € J}. We will show that
ArchK A is a quotient of Idl A.

Definition. If X € A, X* denotes the set of r.u.-limits of sequences in X.

Lemma. If J is an f-ideal, so is J*.

Proof. J* is closed under +, for if a;, b; € J and a; —s a and b; —¢ b, then a; + b; € J, and

(aj + bi) = (sqt) (a+ b) (since m|(a + b) — (aj + b;)| < mla—a;| + mlb—bj| <s+t)aaheJso
a+ be J¥. Moreover, (J¥)T is convex, for suppose a € J* and h € A with 0 < h < a. Then a; — a, for
some a; € Jand s € AT, But then, a; A he Jand (a; A h) —s (a A h) = h,so he J*. O
Lemma. (J n K)* = J* n K*.

Proof. (S) is clear. (2) Suppose f € J¥ n K*. Then f is an r.u.-limit of elements of
J and an r.u.-limit of elements of K. So, a; 15 f for some {a;} < J and s € AT, and
b; 1+ f for some {b;} € K and t € AT. W.l.o.g., s = t, since we may replace s and t
with s v t. By definition of s-regulated convergence, there are functions

N, N’ : N — N such that m(f — a;) < s if i > N(m), and m(f — b;) < s if i > N'(m).
Let N = N v N’'. Then

m((f —a;) v (f— b)) <'s, ifi > N"(m),

but (ffa,')\/(f*b,’)Zf‘l’(*Q,’\/*b,‘):f*(a,'Ab,'). Since a; A bje J n K,
fG(JﬁK)*. O
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ArchK A is a quotient of Idl A

Starting with any J € Idl A, if we iterate the =-operation

transfinitely, we eventually reach a stable value. More precisely, let

JO J. For ordinals o, let J**1 := (J*)*. For limit ordinals A, let
= J{J¥| a< A} Let ru(J) := J1.

Proposition. ru: Idl A — Idl A is a nucleus, whose image is
ArchK A.

Proof. By construction J < ru(J) = ru(ru(J)). By the Lemma,

ru(d n K) = ru(J) n ru(K), so ru is a nucleus. Evidently,
Je ArchK Aiff J = J* iff J = ru(J). O

Problem. Give “nice” (e.g., finite, or easy to check, and useful)
conditions on a, b € A for ru({ay) = ru({b)) and for {a) = ru({a)).
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The Yosida Frame VA of an /-group A

Definition. Let A be an abelian /-group, and let G be a frame. We
say that g: At — g is a Yosida map out of A if for all a,be A™:

g(04) =
( glan b) g(a) ~ g(b),
(1) glav b)=g(a)vg(b),
(l) gla+b)=g(a) v g(b);
(Y) if {a}%, € AT and a;1pa, then g(a) = \/ 2, g(a).

The universal Yosida map out of A is denoted y : AT — VA.

)
3)
4)
)

Remarks. In the terminology of the last lecture, if we let

R = Rigy(A™), then YA = FAT/R and y = jg. In the definition
above, we have used a more efficient way of speaking about frames
by generators and relations.
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Relationships between YA and ArchK A

In the following diagram:
> gy is the frame quotient mapping induced by the relation Y;
Jr and y are the “presentation maps” for Z,A and YA;
i takes a € AT to the f-ideal (a);
ru is the nucleus described on the previous slide, viewed as a frame
morphism;
» jand ruoi are the induced frame morphisms.

\/

v vyyv

T,A

Idl A » ArchK A

If G is a frame and we adjoin a new top element that is different from Tg, we
call the result the augmentation of G. Z,A is the augmentation of Idl A, and
YA is the augmentation of ArchK A.
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V(A e)

Definition. Suppose e € AT. )(A, e) denotes the quotient of ArchK A (or of
YA) obtained by identifying y(e) with the top. (This is the open sublocale of
YA corresponding to the map z+— z A y(e).)

Theorem. If A is divisible, Y(A, e) is regular.
Remark. ye ((a— b)*) = [a > b] = “the extent to which a > b".
Proof. Let ye(a) := y(a) A y(e). The elements y.(a), a€ AT generate J(A,e). By

relation Y,
\/{ye ) | n=12,. }
1

since |a— (a— %e)ﬂ < e Suppose 1 > p>s>qg>0in Q. Then

By a similar argument, ye((a — pe)™) A ye((se — a)T) = L. Thus ye((a — pe)™) is

well-inside ye ((a — ge)) < ye(a). O

Comments. (1) The proof actually demonstrates completely regularity. (2) The
divisiblity hypothesis can be dispensed with. (3) As a corollary, ArchK A is locally
regular. | do not know if it is the case that ArchK A is regular for all A.
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What's next?

We have developed two representation theorems:

(I) the embedding of an arbitrary abelian ¢-group in a product of
totally-ordered groups; and

(1) the embedding of an arbitrary archimedean ¢-group with weak unit in a
D(X), X a compact T»-space.

We are in the middle of developing a third:

(111) an embedding of an arbitrary archimedean ¢-group with weak unit in a
C(L), L a regular Lindeldf locale.

We have nearly finished understanding the “representation space” L = Y(A, e)
of (I1). We have yet to show that it is Lindeldf. After this, we will equip this
space with an ¢-group of functions, and then embed A in this ¢-group.

Ultimate goal. We conjectured that there is a fourth representation theorem
that: (i) applies to arbitrary archimedean ¢-groups, (ii) generalizes the localic
represenation, (iii) is functorial, and (iv) enables us to deduce much of the
known theory of the category Arch of archimedean ¢-groups. The goal of this
course is to discover this as-yet unknown representation.
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