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Semilattices

Definition. A semilattice L is a set equipped with an associative,
commutative, idempotent binary operation (i.e., an idempotent,
commutative semigroup).

Some notational conventions. If the operation is denoted A (meet), we call L a
A-semilattice. In this case, we write a < bifaA b=a, a,be L. As we proved
earlier, this makes L into a poset in which a A b is the greatest lower bound of
a and b.

We do not require a semilattice to have an identity. If there is one, it is unique.

An element of a A-semilattice L is an identity iff it is the largest element of L.

An element z in a x-semigroup L is said to be a zero for *, or an absorbing
element for + if zxa =z = a=z for all ae L. A semigroup can have at most
one zero. A zero in a A-semilattice (if there is one) is the smallest element of L.
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Free semilattices

Proposition. For any set X, let SX denote the set of non-empty
finite subsets of X with the operation = defined by A« B := Au B.
Then SX is the free x-semilattice on X.

If we include the empty set, then we get an identity and the free 1-%-semilattice.

Suppose the operation is A. The order induced on SX by A is the opposite of
the containment order: A< B < BCA.

Proof Sketch. Suppose L is a x-semilattice and ¢ : X — L is a set map. We
must show that ¢ has a unique extension to an #-morphism from SX to L.
Define ¢ : SX — L by ¢(A) :=*k{¢(a) | ae A}. Then,
B(AxB) = #{6(x) | xe AU B}
= ({000 | xe A}) % (#{6(x) | x € BY)

— (A) * 6(B). O
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Frames

Definition. A frame A is a A-semilattice equipped with
distinguished elements T and L, and a map \/ from the power set
of A to A such that:

(i) foranyae A, L <a<T,;

(ii) forany B< Aandany be B, b<\/B;

(iii) foranyae Aandany B A, an\/B=\/{anb|beB}.
A frame morphism is a function between frames that preserves the
frame operations T, L, A and \/.

Here, we have made an “equational” definition of a frame: a frame is a set

with operations that obey certain equational laws. (The inequalities can be
stated as equations using A.)

\/ B is the least upper bound of B in the order induced by A, forif b<ueF
forall be B, then \/B=\/{uanb|beB}=uAr\/B,so\/B<u.
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Free Frames

Definition. If L is a poset, DL denotes the set of all down-sets of
L. Forany ael, l[a={bel|b<a}eDL. EL denotes DL with
a top element T, adjoined.

Note that DL has operations A := binary intersection and \/ := arbitrary
union, and A distributes over \/, because these are simply set-theoretic
operations. The operations extend uniquely to £L, making it a frame.

The empty set is the bottom element or DL. The top element of DL is
L=\/{la]ae L}, but this is different from T, .

Theorem. For any set X, let 7X:=E(SX), and let j : X — FX
be the map defined by j(x) := |{x}. Then (F,j) is the free frame
on X, i.e., if Ais any frame and ¢ : X — A is any set map, then
there is a unique frame morphism ¢ : FX — A such that ¢ = ¢o}.
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The Theorem follows immediately from the following:

Lemma. Suppose L is a A-semilattice. Then EL is the free frame
on L, i.e., any A-preserving map ¢ : L — A, where A is a frame,
has a unique extension to a frame map ¢ : EL — A.

Proof Sketch. Let $(D) := \/{¢(a) | ac D}, for any D € DL, and let
&(T,,) = T,. (See Johnstone, Stone Spaces I.1.2. The most interesting part

of the proof is the verification that ¢ preserves A. )

7/15



Frame Congruence Relations

Definition. Suppose A is a frame and R is an equivalence relation
on A. We say that R is a frame congruence relation if it “respects
the operations,” i.e., if a;,a; € A and a; R, for all j € I, then
(ao na1)R(ag A ay) and \/{ai |iel}R\/{a:|iel}.
Facts.
» R< A x Ais a frame congruence relation on A iff R is an
equivalence relation and a sub-frame of A x A.
> Any intersection of frame congruence relations on A is a
frame congruence relation on A.

» Given any relation on A, there is a smallest congruence
relation containing it.
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Frames by Generators and Relations

Every element of FX can be written in the form \/ B, where each
element of B is of the form x; A --- A X, for some finite set
{x1,...,xn} S X. We call such an expression a frame word in X.

Example. \/{xj1 A -+ A Xin, | 1 €1}

Suppose X is a set and R is a set of equations between frame
words in X. Let FX/R denote the quotient of FX by the smallest
frame congruence containing R. Let jr : X — FX/R denote the
composition of set map j : X — F X followed by the quotient map
FX — FX/R.
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Frames by Generators and Relations

Fact. Suppose A is a frame and ¢ : X — A is a set map. Suppose
further that ¢(wy) = ¢(w) for all equations w; = ws in R. Then,
the the kernel of ¢ contains R, so (by the isomorphism theorem)
there is a unique frame morphism ¢ : FX/R — A such that

$ojr = 9.
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Localic /-spectrum

For any abelian ¢-group A, let R;(A™") be the set of equations (in
FA™) of the following form, where 0,a,b e A*:

(h) J(0) = L,

(k) j(anb)=j(a)nj(b),

() j(a+b) =j(a) v j(b),

(l) j(av b) =j(a) v j(b).
Note that these equations are not true in FA™, but if we write jr
in place of j, then we have true equations in FAT/R;(A™)

Definition. The /ocalic spectrum of an f-group A is

T)A = FA* JR/(A").

Fact. For ac A™, let i(a) := {(a). The map i satisfies the relations
l1—ls, so we have a frame morphism i : Z;A — Id/ A. On the next
slide, we examine this map.
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i T)A— Idl A

h j(0) =1 0y < I for all | € IdI A
h | J@nrb)=j@rjb) | (anrby=(aynib
h | ja+b)=j@@vib) | (a+by=<avib
L | J(avb)=4(a) vi(b) | (avby=<ayv<ib

Proposition. The map i : ZyA — Idl A is surjective and injective
on IgA\T/ZA.

Proof. Surjectivity is obvious. By b, every element of Z,A other than the top
can be written in the form \/{jr(g) | g € G} for some subset G = A™.
Suppose (G) = {H) for some H € AT. We must show that

V{jr(g) | g€ G} =\/{jr(h) | he H}. For any he H, there is a finite list
gi,...,&qn of elements of G such that h < g1 + --- + g». But then

Jr(h) < \/{Jr(g) | g€ G}. Since h was an arbitrary element of H,

VA{jr(h) | he H} < \/{jr(g) | g € G}. The desired equality follows by
symmetry. O
Note: The map i must take the top element of Z,A to the top of Idl A, which is (AT).
Thus, while Tz,4 > \/{jr(a) | a€ At} in Z;A, i takes both these elements to (A™).
These are the only two elements of Z,A that are identified by i.
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I, is a functor

Suppose ¢ : A — B is a morphism of abelian /-groups. Then
jro¢ AT - I,B
satisfies 1—ly. b, for example, is verified as follows (a, b € A):
Uro@)(an b) =jr(¢(a) n ¢(b)) = (jro@)(a) A (jr o d)(b).

Thus, there is a unique frame morphism Z,¢ : ZyA — ;B such
that (Ig) o jr = ¢oJr.

At 2, gt

W

T,A 25 1,B
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Why isn't \/{jr(a) | a€ A} the top of Z,A?

Answer: Functoriality! ¢(A) may generate a proper idea of B, in

which case,
Ti6(\/ {Jr(a) | 2 € A})

is not the top of ZyB. Thus, while /d/ A is a frame for any abelian
L-group A, Idl is not functorial. Z, repairs this.

ZyA always has a frame morphism to {1, T} that sends Tz,4 to T
and all other elements of 7,A to 1.

Viewing Z,A as a locale, this morphism is a closed point whose only open
neighborhood is the whole locale. Suppose X and Y are topological spaces and Y
contains such a point q. Let U be a proper open subset of X, and let f : X — Y be
continuous on U and satisfy f(x) = q iff x € X\U. For any open V in Y, either g ¢ V
and f~1(V) is an open subset of U, or g€ V and f~1(V) = X. Thus, a function
from X to Y is the same thing as an open subset of X and a continuous function

from that set to Y\{q}.
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What's Next?

Archimedean kernels (relatively-uniformly-closed ideals)

Localic real numbers

Localic Yosida

Here is a link to a good lecture by Anrdé Joyal on frames and
locales (from “A crash course in topos theory: the big picture”)
https://youtu.be/Ro8KoFFdtS4
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