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The Yosida Representation (review of last lecture)

An important and influential reference for the material in Lectures
2 & 3 (and more) is:

Hager A W & Robertson L C, Representing and ringifying a Riesz
space, Symposia Mathematica 21 (1975), 411 – 431.

A copy is in the Dropbox folder (“Hager-Robertson-1975.pdf”)

In the present lecture, we will review the Yosida Representation,
and then apply it to the category W∗ of archimedean `-groups
with strong unit. A major goal of much research over the past
several decades has been to generalize results concerning W∗ to
the categories W (archimedean `-groups with weak unit) and Arch
(archimedean `-groups in general). In this lecture, we will present
some of the W∗ prototype theorems.
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Recall Yosida Part 1

Suppose A is an archimedean `-group with weak unit u. Then
there is a compact Hausdorff space Y (A, u) and an `-isomorphism:

(̂ )u : A→ Âu ⊆ D(Y (A, u)),

where Âu is a point-separating∗ `-group of continuous
extended-real-valued functions on Y (A, u) and ûu = 1.

∗ We say a set A of functions in D(X ) is point-separating if for any x0, x1 ∈ X ,

there is a ∈ A such that a(x0) = 0 and a(x1) 6= 0.
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Recall Yosida Part 2

Suppose B is an archimedean `-group with weak unit v , and
φ : A→ B is an `-group morphism with φ(u) = v .

Then there is a continuous map: Y (φ) : Y (B, v)→ Y (A, u) such
that

φ̂(a)v = âu ◦ Y (φ).
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Recall Yosida Part 3

Suppose A is a point-separating `-group of continuous
extended-real-valued functions on a compact Hausdorff space X ,
and 1 ∈ A.

Then x 7→ Mx := { a ∈ A | a(x) = 0 } is a homeomorphism of X
with Y (A, 1), and â1(Mx) = a(x) for all a ∈ A.
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The Categories W and Ŵ

Objects of W: Pairs (A, u), A an archimedean `-group; u ∈ A a
weak unit.

Morphisms of W: `-group morphisms φ : (A, u)→ (A′, u′), with
φ(u) = u′.

Objects of Ŵ: Pairs (A,X ), where X is a compact Hausdorff space
and A is a point-separating `-group of continuous
extended-real-valued functions on X containing 1.

Morphisms of Ŵ: A morphism from (A,X ) to (A′,X ′) is a
continuous map Φ : X ′ → X such that for all a ∈ A, a ◦ Φ ∈ A′.
This implies in particular that Φ−1(a−1(+∞)) must be nowhere dense in X ′ for all

a ∈ A; see (Hager Robertson 1975, Remark 2.13). A, as an algebra of functions on X,

endows X with a geometric structure. The condition a ◦ Φ ∈ A′ is a demand that Φ

preserve this structure. This is an embryonic version of idea underlying the idea of a

“structure sheaf” — a topic that we will explore in detail later.
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Yosida Theorem: Categorical Interpretation

The Yosida Theorem says that the categories W and Ŵ are
equivalent, via the functor Y, where

Y(A, u) := (Âu,Y (A, u))

Y(φ) := Y (φ)

Because of this, we need not distinguish between the two
categories. Given any φ : (A, u)→ (B, v) in W, we may assume
without any loss of generality that

I A and B are `-groups of continuous extended-real-valued
functions on spaces Y (A, u) and Y (B, v) and

I φ is induced by a continuous map f : Y (B, v)→ Y (A, u).

8 / 14



Strong Units: the Categories W∗ and C∗

Definition. Let A be an `-group. An element e ∈ A is called a
strong unit if 0 ≤ e and for every a ∈ A, there is n ∈ N such that
|a| ≤ n e.

Definition.

(i) The category W∗ is the full subcategory of W whose objects
are those pairs (A, e) such that e is a strong unit.

(ii) The category C∗ is the full subcategory of W∗ whose objects
are those pairs (A, e) such that Âe = C ∗(Y (A, e)) (all
continuous real-valued functions on Y (A, e)—necessarily
bounded, since Y (A, e) is compact).
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C∗ is a monoreflective subcategory of W∗

Suppose (A, e) is an object of W∗. Then we have a W∗ morphism

ρA : A→ ρA := C ∗(Y (A, e)), where ρA(a) := âe .

Comment: We have merely renamed a few things that we’ve already encountered —

ρA is the representation morphism (̂ )e . We do this to be able say things in a manner

that meshes with category theory. In particular, we will show that ρA is a reflection

map—a concept we will define on the next slide.

Theorem. Let (B, d) be an object of C∗, and let
φ : (A, e)→ (B, d) be a morphism of W∗. Then there is a
C∗-morphism φ : (ρA, e)→ (B, d) such that φ = φ ◦ ρA.

Proof. Without loss of generality, we may assume B = C∗(Y (B, d)). φ is

induced by a continuous map f : Y (B, d)→ Y (A, e), such that φ̂(a)d = âe ◦ f .

Let c be any continuous function on Y (A, e). Since ĉe ◦ f is a continuous,

real-valued function on Y (B, d), we have ĉe ◦ f ∈ B. Thus, we may define φ by

φ(c) = ĉe ◦ f , for c ∈ ρA.
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Reflective subcategories
Definition. Suppose C is a category. We say R is reflective in C if:

I R is a full, isomorphism- closed subcategory of C, and

I for each object A of C, there is a morphism ρA : A→ ρA that
is universal to R, i.e., ρA is in R and for any C-morphism φ : A→ B with

codomain B in R, there is a unique morphism φ : ρA→ B, with φ = φ ◦ ρA.

A ρA

B
φ

ρA

∃!φ

If ρA is monic (i.e., left-cancellable) for all A, then R is said to be
monoreflective. Some examples of monoreflective subcategories:

C Tych. sp. distr. latt. torsion-free ab. grps W∗

R cptT2 sp. bool. latt. divisible t-f ab. grps C∗
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Free objects in W∗

Definition. Let I := [0, 1] ⊆ R. Let S be a set. For α ∈ S , let
xα : I S → I be the projection onto the αth factor, and let F ∗` (S)
denote the sub-`-group of C (I S) generated by { xα | α ∈ S } ∪ {1}.
Each element of F ∗` (S) is of the form

∨m
i=1

∧ni
j=1 fij , where m, ni ∈ N and each

fij is an integer plus an integer-linear combination of finitely many elements of

{ xα | α ∈ S } ∪ {1}.

Proposition. Suppose (A, e) ∈W∗ and α 7→ aα is a function from
S to A, with 0 ≤ aα ≤ e for all α ∈ E . Then, there is a unique
`-group morphism φ : F ∗` (S)→ A such that φ(1) = e and
φ(xα) = aα for all α ∈ S .

Proof. For each α ∈ S , âαe : Y (A, e)→ I . Consider the map Φ : Y (A, e)→ I S

whose component at α is âαe . For all f ∈ F ∗` (S) define φ(f ) := f ◦ Φ. Clearly,

xα ◦ Φ = âαe . Moreover, if f , g ∈ F ∗` (S), then (f ∨ g) ◦ Φ = (f ◦ Φ) ∨ (g ◦ Φ)

and (f + g) ◦ Φ = (f ◦ Φ) + (g ◦ Φ), so φ is an `-group morphism.
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Epimorphisms in W∗

Definition. A morphism ε : A→ B in a category C is said to be
C-epi if for all C-morphisms φ, ψ : B → C , φ ◦ ε = ψ ◦ ε implies
φ = ψ.

Examples. Set-epi = surjective. A morphism f : A→ B of
bounded distributive lattices is epi if every element of B is either in
f (A) or is the complement of an element of f (A).

Proposition. A W∗-morphism ε : (A, a)→ (B, b) is epi iff
Y (ε) : Y (B, b)→ Y (A, a) is injective.

Proof Sketch. ε is W∗-epi iff ρε is C∗-epi iff Y (ρε) is
CptHaus-mono iff Y (ρε) = Y (ε) is injective.

Cor. An object (A, a) of W∗ is epicomplete iff it is a C ∗(X ) for
some compact Hausdorff space X .
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Some guiding problems suggested by W∗

In the lectures that follow, our goal will be to develop the theory
needed to address the following:

I Is there a functorial representation for Arch? (Unsolved.)

I What are the free objects in W? (Solved, and easy to represent.) In
Arch? (Solved, but not well-understood; seldom applied.)

I What are the epimorphisms in W? In Arch? (Solved by Ball &

Hager. Not easy.)

I What are the epi-closed objects in W? In Arch? (Solved for W

by Madden & Vermeer using locales. Solved for W and Arch by Ball & Hager

without locales. Not easy.)

I What can we say about the monoreflective subcategories of
W? (Much is known.) Of Arch? (Important problems are unsolved.)
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