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The Yosida Representation (review of last lecture)

An important and influential reference for the material in Lectures
2 & 3 (and more) is:

Hager A W & Robertson L C, Representing and ringifying a Riesz
space, Symposia Mathematica 21 (1975), 411 — 431.

A copy is in the Dropbox folder (“Hager-Robertson-1975.pdf")

In the present lecture, we will review the Yosida Representation,
and then apply it to the category W* of archimedean ¢-groups
with strong unit. A major goal of much research over the past
several decades has been to generalize results concerning W* to
the categories W (archimedean /-groups with weak unit) and Arch
(archimedean ¢-groups in general). In this lecture, we will present
some of the W* prototype theorems.
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Recall Yosida Part 1

Suppose A is an archimedean /-group with weak unit u. Then
there is a compact Hausdorff space Y(A, u) and an /-isomorphism:

—

(),: A= A, C D(Y(A u)),

where /Zu is a point-separating* /-group of continuous
extended-real-valued functions on Y(A, u) and u, = 1.

* We say a set A of functions in D(X) is point-separating if for any xo, x1 € X,
there is a € A such that a(xg) = 0 and a(x1) # 0.
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Recall Yosida Part 2

Suppose B is an archimedean /-group with weak unit v, and
¢ A— B is an {-group morphism with ¢(u) = v.

Then there is a continuous map: Y(¢): Y(B,v) — Y(A, u) such
that

—

¢(a), =ayo Y(9).
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Recall Yosida Part 3

Suppose A is a point-separating ¢-group of continuous
extended-real-valued functions on a compact Hausdorff space X,
and 1 € A.

Then x — M, :={a€ A| a(x) =0} is a homeomorphism of X
with Y(A, 1), and a1(My) = a(x) for all a € A.
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The Categories W and W

Objects of W: Pairs (A, u), A an archimedean ¢-group; u € A a
weak unit.

Morphisms of W: /-group morphisms ¢ : (A, u) — (A, '), with
o(u) =d.

Objects of W: Pairs (A, X), where X is a compact Hausdorff space
and A is a point-separating ¢-group of continuous
extended-real-valued functions on X containing 1.

Morphisms of W: A morphism from (A, X) to (A, X") is a
continuous map ® : X’ — X such that foralla€ A, ao®d € A'.
This implies in particular that ®~'(a~1(+oc0)) must be nowhere dense in X' for all

a € A; see (Hager Robertson 1975, Remark 2.13). A, as an algebra of functions on X,
endows X with a geometric structure. The condition ao ® € A’ is a demand that ®
preserve this structure. This is an embryonic version of idea underlying the idea of a

“structure sheaf’ — a topic that we will explore in detail later.
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Yosida Theorem: Categorical Interpretation

The Yosida Theorem says that the categories W and W are
equivalent, via the functor Y, where

Y(A,u) = (Ay, Y(A, v))
Y(¢) = Y()

Because of this, we need not distinguish between the two
categories. Given any ¢ : (A,u) — (B, v) in W, we may assume
without any loss of generality that

» A and B are /-groups of continuous extended-real-valued
functions on spaces Y(A, u) and Y(B,v) and

» ¢ is induced by a continuous map f : Y(B,v) — Y(A,u).
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Strong Units: the Categories W* and C*

Definition. Let A be an /-group. An element e € A is called a
strong unit if 0 < e and for every a € A, there is n € N such that
la| < ne.

Definition.

(/) The category W* is the full subcategory of W whose objects
are those pairs (A, e) such that e is a strong unit.

(i) The category C* is the full subcategory of W* whose objects
are those pairs (A, e) such that A. = C*(Y(A,e)) (all
continuous real-valued functions on Y (A, e)—necessarily
bounded, since Y (A, e) is compact).
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C* is a monoreflective subcategory of W*

Suppose (A, e) is an object of W*. Then we have a W* morphism
pa A= pA:=C*(Y(A, e)), where pa(a) := ae.

Comment: We have merely renamed a few things that we've already encountered —
pa is the representation morphism (),. We do this to be able say things in a manner
that meshes with category theory. In particular, we will show that pa is a reflection

map—a concept we will define on the next slide.

Theorem. Let (B, d) be an object of C*, and let
¢ : (A,e) — (B, d) be a morphism of W*. Then there is a
C*-morphism ¢ : (pA,e) — (B, d) such that ¢ = ¢ o pa.

Proof. Without loss of generality, we may assume B = C*(Y(B, d)). ¢ is
induced by a continuous map f : Y(B,d) — Y(A,e), such that qﬁ/(;)d =3.0f.
Let ¢ be any continuous function on Y (A, e). Since C. o f is a continuous,
real-valued function on Y(B, d), we have C. o f € B. Thus, we may define ¢ by

¢(c) =Coof, for c € pA. O
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Reflective subcategories
Definition. Suppose C is a category. We say R is reflective in C if:
> R is a full, isomorphism- closed subcategory of C, and

» for each object A of C, there is a morphism pjs : A — pA that
is universal to R, ie., pAis in R and for any C-morphism ¢ : A — B with

codomain B in R, there is a unique morphism ¢ : pA — B, with ¢ = ¢ o pa.

A2 pA

=i
x ! ;

B

If pa is monic (i.e., left-cancellable) for all A, then R is said to be
monoreflective. Some examples of monoreflective subcategories:

C | Tych. sp. | distr. latt. | torsion-free ab. grps | W*
R | cptTy sp. | bool. latt. | divisible t-f ab. grps | C*
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Free objects in W*

Definition. Let / :=[0,1] C R. Let S be a set. For a € S, let

Xa 1 1° — | be the projection onto the o' factor, and let F}(S)
denote the sub-f-group of C(/°) generated by {x, | @ € S}U{1}.
Each element of F;(S) is of the form \/[_; AJ”, f;, where m, n; € N and each
fij is an integer plus an integer-linear combination of finitely many elements of
{xa | € STU{1}.

Proposition. Suppose (A, e) € W* and a +— a, is a function from
Sto A with 0 <a, <eforall « € E. Then, there is a unique
¢-group morphism ¢ : F;(S) — A such that ¢(1) = e and

d(xa) = aq for all a € S.

Proof. For each a € S, 3. : Y (A, e) — I. Consider the map & : Y (A, e) — I°
whose component at « is dq.. For all f € F;(S) define ¢(f) := f o ®. Clearly,
Xa 0 ® = 35.. Moreover, if f,g € F;(S), then (fV g)o®d = (fod)V (god)
and (f + g)o® = (fo®) + (g o P), so ¢ is an £-group morphism. O
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Epimorphisms in W*

Definition. A morphism ¢ : A — B in a category C is said to be
C-epi if for all C-morphisms ¢, : B — C, ¢ o € = 1) o € implies
p=1.

Examples. Set-epi = surjective. A morphism f : A — B of
bounded distributive lattices is epi if every element of B is either in
f(A) or is the complement of an element of f(A).

Proposition. A W*-morphism € : (A, a) — (B, b) is epi iff
Y(e): Y(B,b) — Y(A,a) is injective.

Proof Sketch. € is W*-epi iff pe is C*-epi iff Y(pe) is
CptHaus-mono iff Y(pe) = Y(e) is injective. O

Cor. An object (A, a) of W* is epicomplete iff it is a C*(X) for
some compact Hausdorff space X.
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Some guiding problems suggested by W*

In the lectures that follow, our goal will be to develop the theory
needed to address the following:

>

>

Is there a functorial representation for Arch? (Unsolved.)

What are the free objects in W7 (Solved, and easy to represent.) In
Arch? (Solved, but not well-understood; seldom applied.)

What are the epimorphisms in W? In Arch? (Solved by Ball &
Hager. Not easy.)

What are the epi-closed objects in W? In Arch? (Solved for W
by Madden & Vermeer using locales. Solved for W and Arch by Ball & Hager

without locales. Not easy.)

What can we say about the monoreflective subcategories of
W? (Much is known.) Of Arch? (Important problems are unsolved.)
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