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Lecture 10
Change of Unit

Examples

Tuesday, August 11, 2020



Review
Localic Yosida. Suppose A is an archimedean {-group, and e € A*.

(i) Let y : AT — YA be the set map universal for the following relations

(a,be AT):
(h) y(0) =1,
() y(an b)=y(a) ny(b)
(1) y(a+b) =y(a) v y(b),
() y(av b) =y(a) v y(b).

(Y) if{ai}2, = AJr and a;1pa, then y(a) = \V2, y(a;).
Then YA is order-isomorphic to the augmentation of the frame of
archimedean kernels of A.
(ii) Let ye : A¥ — V.A be the quotient of A obtained by adding the relation:
(Ue) ye(e) =T.
Then Y.A regular Lindelof.
(iii) Let ®c: A — R YV.A be defined by

®e(a)(p.q) =ye ((a—pe)* A (ge—2a)F), p,geQ.

Then &, is an {-homomorphism with kernel e*

Much of this is constructively valid, but the constructive content of statements about the Lindelof property and
relatively-uniformly closed ideals is not known. See “Schlitt-1991.pdf”, “Banaschewski-1999.pdf",
“Banaschewski-Walters-Wayland-2007.pdf”.



®.(a) : R — VeA is the “formal ratio of a to e.” (Some observations)

(1) Suppose A = C(X), with X a regular Lindeldf space. If a,e € C(X) and e
is strictly positive on X, then ®.(a) : O(R) — OX is the map of open sets
induced by the real-valued function a/e, i.e.

®e(a)(p,q) = {xe X | 23 e (p,q)}.

(2) If y(f) = y(e), then YA = VrA, and ®.(a) and ®¢(e) both belong to
R Y.A. The proposition on the next slide will show that ®.(a) - ®¢(e) = d¢(a).
(Formally, this resembles the equality (a/e) - (e/f) = a/f.)

(3) If y(f) < y(e), then there is a frame quotient map 7f : Ve(A) — Vr(A),
and hence a “co-restriction” map w0 : RY.A — RYrA:

R 2Oy AT YA

Note that we may identify V. A (respectively, VrA) with the interval [L, y(e)]
(respectively, [ L, y(f)]) in YA, and w5 (w) = w A y(f) for any w € VeA.



Change of Unit. Proof, part 1.
Proposition (Change of Unit). If a,e,f € AT and y(f) < y(e), then
(7§ 0 De(a)) - Pr(e) = Pr(a).
Corollary. If e,f € AT and y(f) < y(e), then (7§ o ®c(f)) - ®r(e) = 1.
Proof of Proposition. It suffices to show, for all p,g > 0:

(M) \/ yF [(a—se)Jr A (e—uf)+] = yf ((a—pf)+),and

P
0

(i) v [(te N e)+] =y ((qf ~a)").

? i
§\|< v

0

Note that for any a, b € AT and any k € Q=q, y(a A kb) = y(a) A y(kb) = y(a) A y(b) = y(a A b). We use
this to get line (2), below.

Ad (i), let B := (1/2)(a — pf) and let A := (1/2)(a+ pf) = B+ pf = —(B — a). Then:

yi[(@=se)t A (e—un)t] = yr[(a=se) A Lse—ph)7] (1)

— v [(((a = s€) A (se — pf)) v 0) — B + B] ()

=y [(((A—se) A (se —A)) v —B) + B (3)

=yr[(—=|A—se| v (- B)) +B] (4)

—ye[(B—1A—se) "] <y (BY). 5)

)

Thus, each \/-term on the left of (/) is less the the right side of (/). (Continued. . .

5
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Change of Unit. Proof, part 2.

Or goal now is to show the inequality > in the following:

V vi|a=s)t ae—un)*| =y (a=pN*). (6)
s-u=p
s,u>0

To this end, define for n,i € N:

g(n, i) = [(na—ie) n (ie — npf)].

Note that yr (g(n, i)+) = yf [(a - %e)Jr A (e — ?pf)Jr], since yf(af' A a;’) = yf ((clal A C232)+) for

any positive rational numbers c;, cy. For the same reason, this is the \/-term in the LHS of (6) with s = i/n.

g(n7’,):na—znpf+<<na+2npf_’,e>A(ie_%npf)> @)
_ na — npf B na + npf e (®)
2 2
:g<(a—pf)—(a+pf)—i2—:') (9)
Observe that (since yr(ca) = yr(a)):
v () = (0= o) = a1 =1 2[) 7).
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Change of Unit. Proof concluded.

Let:
h:=(a—pf) (10)
2
h(n,i): = (a— pf) — (a+pf)—i?e‘ (11)
172 2
. 2e
h(n) =i\=/l[(afpf)f (a+pf)717H (12)
n2 2
e
:(a—pf)—/\(a+pf)—i7' (13)
i=0
Lemma. If f, w,x € AT, then: A?’Zo\f—iw\ < (|fl —=mw) v w | and (x—nw)Jr AW < %X 8
n2 2 2
h—h(n):/\(a+pf)—;—e‘<((a+pf)—zne)vi (14)
i=0 n n
(h—h(n)T re< <((a+pf) —2ne)T A e) v 2e < (a+pf) v 2e (15)
n 2n n

Lemma. If a,be Aandee AT, (aT rne) — (b7 ne)<(a—b)T re

Using the lemma, we see that h(n)* A e converges to h™ A e with regulator (1/2)(a + pf) v 2e.
(We made a similar argument in Lecture 9.) This completes the proof of the inequality = in (6).

The proof of (ii) is similar. |
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Comments on the proof.

The proof of Change of Unit and of Preservation of Addition (in Lecture 9) use similar
devices. In both cases, we prove, for a certain g € A and family {gs | s € Q}, that

ve(g®) = \/{relg") [ s€Q}. (16)
We use the device of defining h(n) := \/{ hj, | i = —n?,...,n?} (or
h(n) :=\/{hjj, | i=1,...,n%}), such that Ye(gs") = ye(hi) and observing that

VA{yve(hf)|seQ} = \/%2, h(n). Then, we show that h(n) —p, h.

The argument seems to be an elaboration of the simple proof of:

Lemma. For a,e € A*, /72, ve ((a - %)+> = ye(a).

Proof 0<a—(a=)" < 5,50 (a=2)" 1 2

Challenge. Simplify the proofs of Preservation of Addition and Change of Unit, while

preserving their constructive validity. Generalize to provide a (constructive) proof that
if Ais an f-ring with ring unit e, then ®.(a- b) = ®.(a) - P(b).



Elements of RO with multiplicative inverse.

[BH] “The inversion characterizations of C(L) for a locale L. Rocky Mountain Journal of Mathematics 49.7
(2019): 2107-2120. Library: “Ball-Hager-2019.pdf"

Suppose A is an archimedean £-group with weak unit e.

Definition. [BH] An element a € A is said to be kernel-maximal if the W-kernel in A generated by
ais all of A.

Our results shed light on the meaning of this:

Corollary to Change of Unit. Suppose A is an archimedean ¢-group with weak unit e. The
following are equivalent, for f € AT (i) f is kernel-maximal, (ii) ye(f) = Ty, (), (iii)
Ye(A) = Yr(A). If these are true, then ®.(f) has a multiplicative inverse in RY.(A), namely
¢f(e).

Much more is true:

Definition. [BH] An element a € A is said to be Yosida-invertible if there is some f € ®.A such
that a- f = 1 (referring to the multiplication in RY.A).

Theorem. [BH] ®.A = RY.A iff A is divisible, uniformly complete, and every kernel-maximal
element of A is Yosida-invertible.

Challenges. (1) Investigate uniform completion (Stone-Weierstrass) in the localic setting. (There
is substantial lieterature on this.) (2) Conjecture: The group of invertible orthomorphisms of RO
is {f e RO | y(a) = y(1) }, and this is isomorphic to RO via the exponential map.

9/9



