Finding Patterns In The Powers Of a Change Of Basis Matrix

SMILE @ Louisiana State University

July 5, 2012

Finding Patterns In The Powers Of a Change Of Basis Matrix

- Jessica Johnson
- Xavier University of Louisiana
- Benjamin Moore
- University of Mississippi
- Amanda Usey
- University of New Orleans

Outline

I Introduction
II Background and Definitions
III P-Matrix
IV Acknowledgments

Definitions

Stirling Numbers of the $2^{\text {nd }}$ Kind, $S(n, k)$
The number of ways to partition $[n]$ into k blocks, with $S(0,0)=1$.

Definitions

Stirling Numbers of the $2^{\text {nd }}$ Kind, $S(n, k)$
The number of ways to partition $[n]$ into k blocks, with $S(0,0)=1$.

Example

[3], a set with three elements, $\{a, b, c\}$. There are three ways to partition this set into two blocks. We take $\{a\}$ and $\{b, c\},\{a, b\}$ and $\{c\}$, or $\{a, c\}$ and $\{b\}$. Thus $S(3,2)=3$.

Definitions

Bell Numbers, $B(n)$
The number of partitions of $[n]$, or

$$
B(n)=\sum_{k=1}^{n} S(n, k)
$$

Definitions

Bell Numbers, $B(n)$
The number of partitions of $[n]$, or

$$
B(n)=\sum_{k=1}^{n} S(n, k)
$$

Example

Using our previous example, $S(3,1)=1, S(3,2)=3$, and $S(3,3)=1$. So $B(3)=5$.

Definitions

Complementary Bell Numbers, $\tilde{B}(n)$
The number of partitions with an even number of blocks minus the number of partitions with an odd number of blocks, or

$$
\tilde{B}(n)=\sum_{k=1}^{n}(-1)^{k} S(n, k) .
$$

Definitions

Complementary Bell Numbers, $\tilde{B}(n)$
The number of partitions with an even number of blocks minus the number of partitions with an odd number of blocks, or

$$
\tilde{B}(n)=\sum_{k=1}^{n}(-1)^{k} S(n, k) .
$$

Example

$$
\tilde{B}(3)=S(3,2)-(S(3,1)+S(3,3))=3-(1+1)=1 .
$$

Wilf's Conjecture

$S(2,1)=1$ and $S(2,2)=1$, so $\tilde{B}(2)=0$.

Wilf's Conjecture

$S(2,1)=1$ and $S(2,2)=1$, so $\tilde{B}(2)=0$.
Conjecture (Wilf's Conjecture)
$\tilde{B}(n) \neq 0$ for all $n>2$.

Wilf's Conjecture

$S(2,1)=1$ and $S(2,2)=1$, so $\tilde{B}(2)=0$.
Conjecture (Wilf's Conjecture)
$\tilde{B}(n) \neq 0$ for all $n>2$.
It has been proven that there is at most 1 exception.

More on Complementary Bell Numbers

- Stirling Numbers of the $2^{\text {nd }}$ kind have the following recurrence relation:

More on Complementary Bell Numbers

- Stirling Numbers of the $2^{\text {nd }}$ kind have the following recurrence relation:

$$
S(n+1, k)=S(n, k-1)+k S(n, k)
$$

More on Complementary Bell Numbers

- Stirling Numbers of the $2^{\text {nd }}$ kind have the following recurrence relation:

$$
S(n+1, k)=S(n, k-1)+k S(n, k)
$$

- From this we get

$$
\tilde{B}(n+j)=\sum_{k=0}^{n+j}(-1)^{k} S(n+j, k)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k),
$$

More on Complementary Bell Numbers

- Stirling Numbers of the $2^{\text {nd }}$ kind have the following recurrence relation:

$$
S(n+1, k)=S(n, k-1)+k S(n, k)
$$

- From this we get

$$
\tilde{B}(n+j)=\sum_{k=0}^{n+j}(-1)^{k} S(n+j, k)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k)
$$

where $\lambda_{j}(x)$ are polynomials of degree j defined recursively by

- $\lambda_{0}(k)=1$
- $\lambda_{j+1}=x \lambda_{j}(x)-\lambda(x+1)$

The Polynomials $\lambda_{j}(x)$

- $\tilde{B}(n+j)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k) \Longrightarrow \lambda_{j}(0)=\tilde{B}(j)$.

The Polynomials $\lambda_{j}(x)$

- $\tilde{B}(n+j)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k) \Longrightarrow \lambda_{j}(0)=\tilde{B}(j)$.
- The set $\left\{(x)_{r}: 0 \leq r \leq j\right\}$ is a basis for the vector space of polynomials with degree $\leq j$.

The Polynomials $\lambda_{j}(x)$

- $\tilde{B}(n+j)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k) \Longrightarrow \lambda_{j}(0)=\tilde{B}(j)$.
- The set $\left\{(x)_{r}: 0 \leq r \leq j\right\}$ is a basis for the vector space of polynomials with degree $\leq j$.
- We rewrite $\lambda_{j}(x)$ in terms of this basis and obtain:

$$
\lambda_{j}(x)=\sum_{r=0}^{j} c_{j}(r)(x)_{r}
$$

The Polynomials $\lambda_{j}(x)$

- $\tilde{B}(n+j)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k) \Longrightarrow \lambda_{j}(0)=\tilde{B}(j)$.
- The set $\left\{(x)_{r}: 0 \leq r \leq j\right\}$ is a basis for the vector space of polynomials with degree $\leq j$.
- We rewrite $\lambda_{j}(x)$ in terms of this basis and obtain:

$$
\lambda_{j}(x)=\sum_{r=0}^{j} c_{j}(r)(x)_{r}
$$

- There is an infinite matrix P such that $c_{j+1}=P c_{j}$

The Polynomials $\lambda_{j}(x)$

- $\tilde{B}(n+j)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k) \Longrightarrow \lambda_{j}(0)=\tilde{B}(j)$.
- The set $\left\{(x)_{r}: 0 \leq r \leq j\right\}$ is a basis for the vector space of polynomials with degree $\leq j$.
- We rewrite $\lambda_{j}(x)$ in terms of this basis and obtain:

$$
\lambda_{j}(x)=\sum_{r=0}^{j} c_{j}(r)(x)_{r}
$$

- There is an infinite matrix P such that $c_{j+1}=P c_{j}$
- $P^{n}(0,0)=\tilde{B}(n)$.

Defining P

Defining P

- $P(r, r+1)=-r-1$
- $P(r, r)=r-1$
- $P(r+1, r)=1$
- $P(r, s)=0$ if $|r-s|>1$
$P=$

$$
\left(\begin{array}{cccccc}
-1 & -1 & 0 & 0 & 0 & \cdots \\
1 & 0 & -2 & 0 & 0 & \cdots \\
0 & 1 & 1 & -3 & 0 & \cdots \\
0 & 0 & 1 & 2 & -4 & \cdots \\
0 & 0 & 0 & 1 & 3 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)=\left(\begin{array}{cc}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right)
$$

Matrix Multiplication

- Given $A_{n \times m}, B_{m \times n}$

Matrix Multiplication

- Given $A_{n \times m}, B_{m \times n}$
- Then $A B(r, s)=\sum_{k=1}^{m} A(r, k) B(k, s)$.

Matrix Multiplication

- Given $A_{n \times m}, B_{m \times n}$
- Then $A B(r, s)=\sum_{k=1}^{m} A(r, k) B(k, s)$.
- $P^{2}(r, s)=\sum_{k=0}^{\infty} P(r, k) P(k, s)$

Proof $P^{2}(r, r)=r^{2}-4 r$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Recall that $P(r, s)=0$ if $|r-s|>1$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Recall that $P(r, s)=0$ if $|r-s|>1$

$$
=P(r, r-1) P(r-1, r)+P(r, r) P(r, r)+P(r, r+1) P(r+1, r)
$$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Recall that $P(r, s)=0$ if $|r-s|>1$

$$
\begin{gathered}
=P(r, r-1) P(r-1, r)+P(r, r) P(r, r)+P(r, r+1) P(r+1, r) \\
=1(-(r-1)-1)+(r-1)(r-1)+(-r-1) 1
\end{gathered}
$$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Recall that $P(r, s)=0$ if $|r-s|>1$

$$
\begin{gathered}
=P(r, r-1) P(r-1, r)+P(r, r) P(r, r)+P(r, r+1) P(r+1, r) \\
=1(-(r-1)-1)+(r-1)(r-1)+(-r-1) 1 \\
=-r+r^{2}-2 r+1-r-1
\end{gathered}
$$

Proof $P^{2}(r, r)=r^{2}-4 r$

$$
P^{2}(r, r)=\sum_{k=0}^{\infty} P(r, k) P(k, r)
$$

Recall that $P(r, s)=0$ if $|r-s|>1$

$$
\begin{gathered}
=P(r, r-1) P(r-1, r)+P(r, r) P(r, r)+P(r, r+1) P(r+1, r) \\
=1(-(r-1)-1)+(r-1)(r-1)+(-r-1) 1 \\
=-r+r^{2}-2 r+1-r-1 \\
=r^{2}-4 r
\end{gathered}
$$

The matrix P^{2} has the following form

- $P^{2}(r, r+2)=(r+1)(r+2)$
- $P^{2}(r, r+1)=-2 r^{2}-r+1$
- $P^{2}(r, r)=r^{2}-4 r$
- $P^{2}(r+1, r)=2 r-1$
- $P^{2}(r+2, r)=1$
- $P^{2}(r, s)=0$ if $|r-s|>2$

$$
\begin{aligned}
& P^{2}= \\
& {\left[\begin{array}{ccccc}
r^{2}-4 r & -2 r^{2}-r+1 & (r+1)(r+2) & 0 & \cdots \\
-1 & r^{2}-4 r & -2 r^{2}-r+1 & (r+1)(r+2) & \cdots \\
1 & 2 r-1 & r^{2}-4 r & -2 r^{2}-r+1 & \cdots \\
0 & 1 & 2 r-1 & r^{2}-4 r & \cdots \\
0 & 0 & 1 & 2 r-1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]}
\end{aligned}
$$

$P 2=$

$$
\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & \ldots \\
-1 & -3 & -2 & 6 & \cdots \\
1 & 1 & -4 & 9 & \cdots \\
0 & 1 & 3 & -3 & \cdots \\
0 & 0 & 1 & 5 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The matrix P^{3} has the following form

The matrix P^{3} has the following form

- $P^{3}(r, r+3)=-(r+1)(r+2)(r+3)$
- $P^{3}(r, r+2)=3 r^{3}+9 r^{2}+6 r$
- $P^{3}(r, r+1)=-3 r^{3}+3 r^{2}+8 r+2$
- $P^{3}(r, r)=r^{3}-9 r^{2}+6 r+1$
- $P^{3}(r+1, r)=3 r^{2}-6 r-2$
- $P^{3}(r+2, r)=3 r$
- $P^{3}(r+3, r)=1$ for all $(r-s)=3$
- $P^{3}(r, s)=0$ if $|r-s|>3$

The matrix P^{4} has the following form:

The matrix P^{4} has the following form:

- $P^{4}(r, r+4)=(r+1)(r+2)(r+3)(r+4)$
- $P^{4}(r, r+3)=-4 r^{4}-26 r^{3}-56 r^{2}-46 r-12$
- $P^{4}(r, r+2)=6 r^{4}+14 r^{3}-5 r^{2}-23 r-10$
- $P^{4}(r, r+1)=-4 r^{4}+14 r^{3}+20 r^{2}+r-1$
- $P^{4}(r, r)=r^{4}-16 r^{3}+30 r^{2}+-4 r+1$
- $P^{4}(r+1, r)=4 r^{3}-18 r^{2}-2 r+1$
- $P^{4}(r+2, r)=6 r^{2}-4 r-5$
- $P^{4}(r+3, r)=4 r+2$
- $P^{4}(r+4, r)=1$ for all $(r-s)=4$
- $P^{4}(r, s)=0$ if $|r-s|>4$

General Results

General Results

Theorem
$P^{j}(r, s)=0$ if $|r-s|>j$ for all $j \in \mathbb{N}$

General Results

Theorem
$P^{j}(r, s)=0$ if $|r-s|>j$ for all $j \in \mathbb{N}$

Theorem
$P^{j}(r+j, r)=1$ for all $j \in \mathbb{N}$.

General Results

Theorem
$P^{j}(r, s)=0$ if $|r-s|>j$ for all $j \in \mathbb{N}$

Theorem
$P^{j}(r+j, r)=1$ for all $j \in \mathbb{N}$.

Theorem
$P^{j}(r, r+j)=(-1)^{j}(r+1)^{(j)}$ for all $j \in \mathbb{N}$, where $(r+1)^{(j)}$ denotes the rising factorial, $(r+1)(r+2) \ldots(r+j)$.

Proof

Proof.

- Base case is clear.

Proof

Proof.

- Base case is clear.
- Assume that $P^{j}(r, r+j)=(-1)^{j}(r+1)^{(j)}$ for some $j \in \mathbb{N}$.

Proof

Proof.

- Base case is clear.
- Assume that $P^{j}(r, r+j)=(-1)^{j}(r+1)^{(j)}$ for some $j \in \mathbb{N}$.
- Then

$$
\begin{aligned}
P^{j+1}(r, r+j+1) & =\sum_{k=0}^{\infty} P^{j}(r, k) P(r+j, r+j+1) \\
& =P^{j}(r, r+j) P(r+j, r+j+1) \\
& =(-1)^{j}(r+1)^{(j)}(-r-j-1) \\
& =(-1)^{j+1}(r+1)^{(j)}(r+j+1) \\
& =(-1)^{j+1}(r+1)^{(j+1)}
\end{aligned}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \quad \begin{array}{l}
\frac{1}{-1}=-1 \frac{2}{1}=2 \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{array} .
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \\
\left.\begin{array}{l}
\frac{1}{-1}=-1 \frac{2}{1}=2 \\
P_{m}^{i=2}(0, r+j) \\
P_{m}^{j=2}(r+j, 0)
\end{array}\right) \quad \begin{array}{l}
\frac{2}{1}=2 \\
-2
\end{array}=-1 \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
\left.P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \quad \begin{array}{l}
\frac{1}{-1}=-1 \frac{2}{1}=2 \\
\left.P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \quad \begin{array}{l}
\frac{2}{P_{m}^{j=2}(0, r+j)}=\frac{2}{1}=2 \\
P_{5}^{4=2}(r+j, 0)
\end{array}\right] \frac{0}{0}=d n e \\
-5 \\
2 \\
-15
\end{array} \begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & -3 & -43 & -92 & 236 \\
1 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gathered}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \quad \frac{1}{-1}=-1 \frac{2}{\top}=2 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{T}=2 \\
P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)
\end{gathered}
$$

Some experimenting

$$
\begin{gather*}
P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
P_{5}^{3}=\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -15 & 6 \\
1 & 3 & -2 & -35
\end{array}\right) \quad \begin{array}{l}
\frac{1}{-1}=-1 \frac{2}{1}=2 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
P_{5}^{4}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
\left.\begin{array}{lrrrr}
1 & \frac{P_{m}^{i=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
1 & -1 & -10 & -12 & 24 \\
-5 & 30 & -18 & -144 \\
2 & -15 & 1 & 129 & 132 \\
1 & -3 & -43 & -92 & 236 \\
6 & 11 & -59 & -303
\end{array}\right)
\end{array} .
\end{gather*}
$$

Some experimenting

$$
\begin{aligned}
& P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
& \frac{1}{-1}=-1 \frac{2}{T}=2 \\
& \frac{P_{m}^{i=2}(0, r+j)}{P_{m}^{=\frac{1}{2}}(r+j, 0)}=\frac{2}{T}=2 \\
& \text { 3 }\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & 15
\end{array}\right) \quad \frac{2}{-2}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
& \frac{\frac{P_{m}^{i=3}(0, r+j)}{P_{m}^{=3}(r+j, 0)}}{\lim ^{-1}}=\frac{-6}{1}=-6 \\
& P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)^{\frac{-1}{1}=-1}
\end{aligned}
$$

Some experimenting

$$
\begin{aligned}
& P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
& \frac{1}{-1}=-1 \frac{2}{T}=2 \\
& \frac{P_{m}^{i=2}(0, r+j)}{P_{m}^{=\frac{1}{2}}(r+j, 0)}=\frac{2}{T}=2 \\
& 3 \quad\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18
\end{array}\right) \quad \frac{2}{-2}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
& \frac{\frac{P_{m}^{i=3}(0, r+j)}{P_{m}^{=3}(r+j, 0)}}{\lim ^{-1}}=\frac{-6}{1}=-6 \\
& P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)^{\frac{-1}{1}=-1 \frac{-10}{-5}=2}
\end{aligned}
$$

Some experimenting

$$
\begin{aligned}
& P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
& \frac{1}{-1}=-1 \frac{2}{T}=2 \\
& \frac{P_{m}^{i=2}(0, r+j)}{P_{m}^{=\frac{1}{2}}(r+j, 0)}=\frac{2}{T}=2 \\
& 3 \quad\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18
\end{array}\right) \quad \frac{2}{-2}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
& \frac{\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{=3}}=\frac{-6}{1}(r+j, 0)}{1}=-6 \\
& P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right)^{\frac{-1}{1}=-1 \frac{-10}{-5}=2 \frac{-12}{2}=-6}
\end{aligned}
$$

Some experimenting

$$
\begin{aligned}
& P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
& \frac{1}{-1}=-1 \frac{2}{T}=2 \\
& \frac{P_{m}^{i=2}(0, r+j)}{P_{m}^{=\frac{1}{2}}(r+j, 0)}=\frac{2}{T}=2 \\
& 3 \quad\left(\begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18
\end{array}\right) \quad \frac{2}{-2}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
& \frac{\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{=3}(r+j, 0)}}{P^{-3}}=\frac{-6}{1}=-6 \\
& P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right) \quad \begin{array}{l}
\frac{-1}{1}=-1 \frac{-10}{-5}=2 \frac{-12}{2}=-6 \\
\frac{24}{1}=24
\end{array}
\end{aligned}
$$

Some experimenting

$$
\begin{aligned}
& P_{5}^{j=2}=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & -3 & -2 \\
1 & 1 & -4
\end{array}\right) \\
& \frac{1}{-1}=-1 \frac{2}{T}=2 \\
& \frac{P_{m}^{i=-2}(0, r+j)}{P_{m}^{=\frac{1}{2}}(r+j, 0)}=\frac{2}{T}=2 \\
& \left.3 \quad \begin{array}{rrrr}
1 & 2 & 0 & -6 \\
-2 & -1 & 10 & 18 \\
0 & -5 & -5
\end{array}\right) \quad \frac{2}{-2}=-1 \frac{0}{0}=d n e \frac{-6}{1}=-6 \\
& \frac{\frac{P_{m}^{i=3}(0, r+j)}{P_{m}^{=3}}(r+j, 0)}{P^{=3}}=\frac{-6}{1}=-6 \\
& P_{5}^{4}=\left(\begin{array}{rrrrr}
1 & -1 & -10 & -12 & 24 \\
1 & 12 & 30 & -18 & -144 \\
-5 & -15 & 1 & 129 & 132 \\
2 & -3 & -43 & -92 & 236 \\
1 & 6 & 11 & -59 & -303
\end{array}\right) \begin{array}{l}
\frac{-1}{1}=-1 \frac{-10}{1}=24 \\
\frac{24}{1}=24 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24
\end{array}
\end{aligned}
$$

Does this look familiar?

$$
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1
$$

Does this look familiar?

$$
\begin{aligned}
& \frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
& \frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2
\end{aligned}
$$

Does this look familiar?

$$
\begin{aligned}
& \frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
& \frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
& \frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6
\end{aligned}
$$

Does this look familiar?

$$
\begin{aligned}
& \frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
& \frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
& \frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
& \frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24
\end{aligned}
$$

Does this look familiar?

$$
\begin{gathered}
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24 \\
\frac{P_{m}^{j=5}(0, r+j)}{P_{m}^{j=5}(r+j, 0)}=\frac{-120}{1}=-120
\end{gathered}
$$

Does this look familiar?

$$
\begin{gathered}
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24 \\
\frac{P_{m}^{j=5}(0, r+j)}{P_{m}^{j=5}(r+j, 0)}=\frac{-120}{1}=-120 \\
\frac{P_{m}^{j=6}(0, r+j)}{P_{m}^{j=6}(r+j, 0)}=\frac{720}{1}=720
\end{gathered}
$$

Does this look familiar?

$$
\begin{gathered}
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24 \\
\frac{P_{m}^{j=5}(0, r+j)}{P_{m}^{j=5}(r+j, 0)}=\frac{-120}{1}=-120 \\
\frac{P_{m}^{j=6}(0, r+j)}{P_{m}^{j=6}(r+j, 0)}=\frac{720}{1}=720 \\
\vdots
\end{gathered}
$$

Does this look familiar?

$$
\begin{gathered}
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24 \\
\frac{P_{m}^{j=5}(0, r+j)}{P_{m}^{j=5}(r+j, 0)}=\frac{-120}{1}=-120 \\
\frac{P_{m}^{j=6}(0, r+j)}{P_{m}^{j=6}(r+j, 0)}=\frac{720}{1}=720 \\
\vdots \\
-1,2,-6,24,-120,720, \ldots=-1^{r}(r!)
\end{gathered}
$$

Does this look familiar?

$$
\begin{gathered}
\frac{P_{m}^{j=1}(0, r+j)}{P_{m}^{j=1}(r+j, 0)}=\frac{-1}{1}=-1 \\
\frac{P_{m}^{j=2}(0, r+j)}{P_{m}^{j=2}(r+j, 0)}=\frac{2}{1}=2 \\
\frac{P_{m}^{j=3}(0, r+j)}{P_{m}^{j=3}(r+j, 0)}=\frac{-6}{1}=-6 \\
\frac{P_{m}^{j=4}(0, r+j)}{P_{m}^{j=4}(r+j, 0)}=\frac{24}{1}=24 \\
\frac{P_{m}^{j=5}(0, r+j)}{P_{m}^{j=5}(r+j, 0)}=\frac{-120}{1}=-120 \\
\frac{P_{m}^{j=6}(0, r+j)}{P_{m}^{j=6}(r+j, 0)}=\frac{720}{1}=720 \\
\vdots \\
-1,2,-6,24,-120,720, \ldots=-1^{r}(r!) \\
\text { or the Alternating Factorials }
\end{gathered}
$$

How to use this formula for our matrix

$$
-1^{r}(r!) P_{m}^{j}(r, 0)=P_{m}^{j}(0, r), r>0
$$

What about the other rows and columns?

$$
-1^{r}(r!) P_{m}^{j}(r, 0)=(0, r), r>0
$$

What about the other rows and columns?

$$
\begin{gathered}
-1^{r}(r!) P_{m}^{j}(r, 0)=(0, r), r>0 \\
\frac{-1^{r-1}(r!)}{1!} P_{m}^{j}(r, 1)=P_{m}^{j}(1, r), r \geq 0
\end{gathered}
$$

What about the other rows and columns?

$$
\begin{gathered}
-1^{r}(r!) P_{m}^{j}(r, 0)=(0, r), r>0 \\
\frac{-1^{r-1}(r!)}{1!} P_{m}^{j}(r, 1)=P_{m}^{j}(1, r), r \geq 0 \\
\frac{-1^{r-2}(r!)}{2!} P_{m}^{j}(r, 2)=P_{m}^{j}(2, r), r \geq 0
\end{gathered}
$$

What about the other rows and columns?

$$
\begin{gathered}
-1^{r}(r!) P_{m}^{j}(r, 0)=(0, r), r>0 \\
\frac{-1^{r-1}(r!)}{1!} P_{m}^{j}(r, 1)=P_{m}^{j}(1, r), r \geq 0 \\
\frac{-1^{r-2}(r!)}{2!} P_{m}^{j}(r, 2)=P_{m}^{j}(2, r), r \geq 0 \\
\frac{-1^{r-3}(r!)}{3!} P_{m}^{j}(r, 3)=P_{m}^{j}(3, r), r \geq 0
\end{gathered}
$$

What about the other rows and columns?

$$
\begin{gathered}
-1^{r}(r!) P_{m}^{j}(r, 0)=(0, r), r>0 \\
\frac{-1^{r-1}(r!)}{1!} P_{m}^{j}(r, 1)=P_{m}^{j}(1, r), r \geq 0 \\
\frac{-1^{r-2}(r!)}{2!} P_{m}^{j}(r, 2)=P_{m}^{j}(2, r), r \geq 0 \\
\frac{-1^{r-3}(r!)}{3!} P_{m}^{j}(r, 3)=P_{m}^{j}(3, r), r \geq 0
\end{gathered}
$$

General case for all rows and columns

$$
-1^{r-s}(r!) P_{m}^{j}(r, s)=s!P_{m}^{j}(r, s), r \geq 0
$$

Conclusions and Future Work

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.
- We found a way of relating $P^{j}(r, s)$ to $P^{j}(s, r)$.

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.
- We found a way of relating $P^{j}(r, s)$ to $P^{j}(s, r)$.
- In the future we would like to :

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.
- We found a way of relating $P^{j}(r, s)$ to $P^{j}(s, r)$.
- In the future we would like to :
- Find a more general expression for the values of P^{j}

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.
- We found a way of relating $P^{j}(r, s)$ to $P^{j}(s, r)$.
- In the future we would like to :
- Find a more general expression for the values of P^{j}
- Examine the 2-adic valuation of entries in P^{j}

Conclusions and Future Work

- We were able to classify the structure of P^{n} completely for $n=1,2,3,4$.
- We were able to classify the structure of the entries of the top and bottom nonzero diagonals of P^{n}, as well as say which entries could be nonzero.
- We found a way of relating $P^{j}(r, s)$ to $P^{j}(s, r)$.
- In the future we would like to :
- Find a more general expression for the values of P^{j}
- Examine the 2 -adic valuation of entries in P^{j}
- Consider P^{j} modulo $3 * 2^{k}$ for different values of k.

Acknowledgements

- Dr. Valerio De Angelis
- Timothy Shatley
- The SMILE Program
- Louisiana State University
- National Science Foundation

