Section 6.3  Volume by Slicing

Topic 1:  General Slicing Method
We have seen how integration can be used to compute the area of two-dimensional regions bounded by curves.  We now expand this “slice-and-sum” method to finding the volume of three-dimensional solids.
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General Slicing Method



Suppose a solid object extends from  to  and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on .  The volume of the solid is

. 


Topic 2:  The Disk Method

Consider the shaded region R shown below.  When R is rotated about an axis (in this case the x-axis), it forms a three dimensional solid of revolution.
[image: ]	[image: m06_3Donly-3]

The volume of this solid can be found using the general slicing method.
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Disk Method about the x-Axis




Let f be continuous with   on the interval .  If the region R bounded by the graph of f, the x-axis, and the lines  and  is revolved about the -axis, the volume of the resulting solid of revolution is

.


The two graphs below illustrate the Disk Method about the x-axis.
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Topic 3:  The Washer Method

When a region R lying above the x-axis is revolved around the x-axis, the result is a solid with a tubular hole, as illustrated below.
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Washer Method about the x-Axis




Let f and g be continuous functions with  on the interval .  If the region R bounded by the graphs of f, g, and the lines  and  is revolved about the x-axis, the volume of the resulting solid of revolution is

.

The two graphs below illustrate the Washer Method about the x-axis.
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Topic 4:  Revolving about the y-Axis

The figures below show the resulting solid of revolution when a region R is revolved around the y-axis.
[image: ]

Disk and Washer Methods about the y-Axis






Let p and q be continuous functions with  on the interval  .  If the region R bounded by the graphs of , , and the lines  and  is revolved about the y-axis, the volume of the resulting solid of revolution is

.

If , the disk method is used, and the volume is given by



The figures below illustrate the Disk Method about the y-axis.
[image: ]	[image: ]


Topic 5:  Revolving about Other Lines
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