Section 4.1  First Derivative and Graphs
Topic 1:  Increasing and Decreasing Functions

Theorem:  Increasing and Decreaing Functions



For the interval ,  if , then f is increasing, and if  , then f is decreasing.

[image: ]

The intervals on which a function f is increasing and decreasing must always be expressed in terms of open intervals that are subsets of the domain of f. 



Topic 2:  Local Extrema



A real number x in the domain of f such that  or  does not exist is called a critical number of f. 



Critical numbers of f belong to the domain of f and are partition numbers for .  But  may have partition numbers that do not belong to the domain of f and therefore are not critical numbers of f. 

Do not assume that all partition numbers for the derivative of f are critical numbers of the function f.  To be a critical number of f, a partition number for  must also be in the domain of f.










In general, we call  a local maximum if there exists an interval  such that  for all x in .  The value  is called a local minimum if there exists an interval such that  for all x in.  The value  is called a local extrema if it is either a local maximum or a local minimum. A point on a graph where a local extremum occurs is also called a turning point.

Theorem:  Local Extrema and Critical Numbers

If  is a local extrema of the function f, then c is a critical number of f. 


Topic 3:  The First Derivative Test

First Derivative Test for Local Extrema




Let c be a critical number of f where  is defined and either  or  is not defined.  Construct a sign chart for  close to and on either side of c. 

	Sign chart
	


	[image: ]
	
[bookmark: _GoBack] is a local minimum.



If  changes from negative to positive at c then  is a local minimum. 
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 is a local maximum.



If  changes from positive to negative at c, then  is a local maximum.
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 is not a local extremum.



If  does not change signs at c, then  is neither a local minimum nor a local maximum.
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 is not a local extremum.



If  does not change signs at c, then  is neither a local minimum nor a local maximum.


	

Theorem:  Intercepts and Local Extrema of Polynomial Functions




If , , is a polynomial function of degree  , then f has at most n x-intercepts and at most  extrema. 


Topic 4:  Economics Applications
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