Instructions: Work two problems from Section A, two problems from Section B, and one problem from Section C, for a total of five problems. Start each problem on a new page, and write the problem number on the **top right** corner of the page. Make sure you order the pages correctly before submitting the exam. You have three hours. Good luck!

A. Point Set Topology (2 problems)

A1. Let X and Y be topological spaces, and let $f : X \to Y$ be a function. Prove that the following two statements are equivalent.

i. For every open subset V of Y, the set $f^{-1}(V)$ is open in X.

ii. For all $A \subseteq X$, the following inclusion holds: $f(\overline{A}) \subseteq \overline{f(A)}$.

What property of f do these equivalent statements define?

- A2. Prove that a compact Hausdorff space is normal. (Recall that a space X is normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets of X containing A and B respectively.)
- A3. Consider the set of rational numbers \mathbb{Q} as a subspace of \mathbb{R} .
 - i. Find the components and path components of \mathbb{Q} . Is \mathbb{Q} connected? path connected?
 - ii. Show that \mathbb{Q} is not locally connected and not locally path connected.
 - iii. Do any of your answers to the above questions change if you instead use the discrete topology on \mathbb{Q} ?

B. Algebraic Topology (2 problems)

- B1. Compute the fundamental group of S^2 with *n* points removed, where *n* is a positive integer. Also compute the fundamental group of \mathbb{R}^3 with the three coordinate axes removed. Justify your computations and recall any results you are using.
- B2. Let $f: X \to Y$ be continuous. Let x_1 and x_2 be points of X, and let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. There are induced homomorphisms $f_{1_*}: \pi_1(X, x_1) \to \pi_1(Y, y_1)$ and $f_{2_*}: \pi_1(X, x_2) \to \pi_1(Y, y_2)$. Show that if X is path-connected then there are isomorphisms $\phi: \pi_1(X, x_1) \to \pi_1(X, x_2)$ and $\psi: \pi_1(Y, y_1) \to \pi_1(Y, y_2)$ such that the following diagram commutes.

$$\pi_1(X, x_1) \xrightarrow{f_{1*}} \pi_1(Y, y_1)$$

$$\downarrow \phi \qquad \qquad \qquad \downarrow \psi$$

$$\pi_1(X, x_2) \xrightarrow{f_{2*}} \pi_1(Y, y_2)$$

Make sure to prove that ϕ and ψ are isomorphisms. You may assume the standard properties of the path concatenation operation *.

B3. Let X denote the space below, and identify $\pi_1(X, v)$ with the free group F(a, b).

- i. Exhibit two 3-sheeted covers of X: a regular (normal) cover X_N and a irregular (non-normal) cover X_I . Explain how you know X_N and X_I have the desired properties.
- ii. For each of X_N and X_I , describe the complete list of deck transformations.
- iii. Let $p: X_I \to X$ denote the covering map (where X_I is the irregular cover you constructed). Choose $w \in p^{-1}(v)$. Find a minimal set of generators for the (free) subgroup $p_*(\pi_1(X_I, w))$ of F(a, b).

C. Mixed (1 problem)

- C1. i. Define what it means for two spaces to have the same homotopy type.
 - ii. Do the following two spaces have the same homotopy type? Explain.

- iii. If X and Y have the same homotopy type and X is compact must Y also be compact? Sketch a proof or give a counterexample.
- iv. If X and Y have the same homotopy type and X is path connected must Y also be path connected? Sketch a proof or give a counterexample.
- C2. The suspension of a topological space X is the quotient space $\Sigma X = X \times [0,1] / \sim$ where $(x,t) \sim (y,s)$ if and only if either (x,t) = (y,s) or s = t = 1 or s = t = 0.
 - i. Prove that the suspension ΣX need not be simply connected.
 - ii. Prove that the suspension ΣX is simply connected if X is path connected. (Hint: Use the Seifert-van Kampen Theorem.)