Introduction to Applied Mathematics Qualifying Exam, January 2025

The exam is 3 hours. Each problem is worth 20 points, and you can do a maximum of five problems for a total potential score of 100 points. Pick at least one from each category.

 $C^\infty_c(\Omega)$ is defined as smooth compactly supported functions with the closure of the support in $\Omega.$

Category I: Continuum Mechanics

1. (20 points) We denote $x = \varphi(X, t) = \varphi_t(X)$ the transformation from material to spatial coordinates. For a field $\Phi(x, t)$ in spatial coordinates, we denote

$$\frac{d}{dt}\Phi(x,t) = \frac{\partial}{\partial t} \left[\Phi(\varphi(X,t),t)\right] \bigg|_{X = \varphi_t^{-1}(x)}$$

Consider a body B. Let S(x,t) be the Cauchy stress tensor, v(x,t) the velocity spatial field, and $\rho(x,t)$ the mass density spatial field, and $\rho(x,t)b(x,t)$ the body force field. Assume all fields smooth. Recall the balance equations in spatial coordinates

$$\rho \frac{d}{dt}v = \nabla \cdot S + \rho b \tag{1}$$

$$S = S^T.$$
 (2)

Prove that for any $\Omega \subset B$ open with smooth boundary, and $\Omega_t := \varphi_t(\Omega)$, then

$$\int_{\Omega_t} \rho v \cdot \frac{d}{dt} v \, dV_x + \frac{1}{2} \int_{\Omega_t} S : (\nabla^x v + \nabla^x v^T) \, dV_x = \int_{\partial\Omega_t} v \cdot Sn \, dA_x + \int_{\Omega_t} \rho b \cdot v \, dV_x$$

Here A: B is understood as the inner product between second order tensors A and B. Recall $(\nabla \cdot S)_i = \sum_j \frac{\partial}{\partial x_i} S_{ij}$.

2. We denote $x = \varphi(X, t) = \varphi_t(X)$ the transformation from material to spatial coordinates. For a vector field $\Phi(x, t)$ in spatial coordinates, we denote $\frac{d}{dt}\Phi(x, t) = \frac{\partial}{\partial t} [\Phi(\varphi(X, t), t)] \Big|_{X = \varphi_t^{-1}(x)}$. Let $\Phi(x, t)$ be a vector field in spatial coordinates.

a. (10 points) Show $\frac{d}{dt}\Phi = \frac{\partial}{\partial t}\Phi + (\nabla^x \Phi)\Phi$.

b. (10 points) Let $\Omega \subset B$ be open, and $\Omega_t = \varphi_t(\Omega)$. Find G(x, t) such that

$$\frac{d}{dt}\int_{\Omega_t} \Phi(x,t) \ dx = \int_{\Omega_t} G(x,t) \ dx.$$

3. (20 points) Let the vector fields E and H in \mathbb{R}^3 (with coordinates (x_1, x_2, x_3)) satisfy the free harmonic Maxwell system

$$\nabla \times E = i\omega\mu H \tag{3}$$

$$\nabla \times H = -i\omega\epsilon E \tag{4}$$

Suppose that E and H are independent of x_3 , that H is perpendicular to the (x_1, x_2) -plane, and that ϵ and μ are smooth scalar functions of x_1 and x_2 alone, and $\epsilon(x_1, x_2) \neq 0$. Show that the Maxwell system can be reduced to a single scalar second-order PDE for H.

Category II: Fourier Analysis

4. (20 points)

Find the vector-valued field $u: \mathbb{R}^3 \to \mathbb{R}^3$ solving the PDE

$$-\triangle u + \nabla(\nabla \cdot u) + u = f$$

where the components of f are in Schwartz space. Prove the components of u are also in Schwartz space.

5.

a. (10 points) Suppose $f \in C_{per}^{(k)}([-1/2, 1/2])$, i.e. k-times continuously differentiable and periodic. Recall

$$\hat{f}(n) = \langle f, \phi_n \rangle, \qquad \qquad \phi_n(x) = e^{2\pi i x n}.$$

Show for $n \neq 0$ that there exists a constant C > 0 such that

$$|\hat{f}(n)| \le C|n|^{-k}.$$

b. (10 points) Prove if k > 1 that the partial Fourier sum $S_N(f) \to f$ pointwise uniformly on $x \in [-1/2, 1/2]$.

6. (20 points) Suppose $g \in C(\mathbb{R})$ be periodic with period 1, i.e. $g(x+1) = g(x) \ \forall x \in \mathbb{R}$. Let $\alpha \in \mathbb{R}$ be irrational. Define the sequence

$$G_N = \frac{1}{2N+1} \sum_{n=-N}^{N} g(\alpha n).$$

Prove

$$G_N \to \int_{-1/2}^{1/2} g(x) dx$$
 as $N \to \infty$.

Category III: Weak-form PDEs & Distribution Theory

7. (20 points) Let $\phi \in C_c^{\infty}(\mathbb{R}^d)$. Let $\phi_{\epsilon}(x) = \varepsilon^{-d}\phi(x/\epsilon)$, and assume $\int \phi(x) dx = 1$. Find the limit of ϕ_{ϵ} as $\epsilon \to 0$ in the sense of distributions.

8. (20 points) Let $\Omega \subset \mathbb{R}^3$ be a simply connected open set with smooth boundary. Let 1_{Ω} be the distribution satisfying $\langle 1_{\Omega}, \phi \rangle = \int_{\Omega} \phi(x) dx$. Find the distributional gradient $\nabla 1_{\Omega}$ over vector-valued test functions.

9. (20 points) Let $\Omega \subset \mathbb{R}^3$ be bounded and open and $0 < \tau_1 < \tau(x) < \tau_2$. Consider the PDE in the weak sense, $\nabla \cdot A(x) \nabla u(x) + \lambda \tau(x) u(x) = f(x)$ for $f \in L^2(\Omega)$ where $A(x) \in \mathbb{R}^{3 \times 3}$ is self-adjoint with eigenvalues bounded above and below by positive real numbers. Define $H_0^1(\Omega)$ as the closure of $C_c^{\infty}(\Omega)$ with respect to the norm

$$\|\psi\|_1^2 := \int_{\Omega} \nabla \psi(x) \cdot A(x) \overline{\nabla \psi(x)} dx.$$

Show there exists a weak solution in $H_0^1(\Omega)$ for all λ except possibly a countable set.

10. (20 points)

Consider the operator $L = (-\triangle + 1)^{-1} : L^2([0,1]^3) \to L^2([0,1]^3)$. Prove L is a compact operator.