Introduction to Applied Mathematics Qualifying Exam, August 2024

The exam is 3 hours. Each problem is worth 20 points, and you can do a maximum of five problems for a total potential score of 100 points. Pick at least one from each category.

Recall that $\mathcal{S}(\mathbb{R}^d)$ is the Schwartz space.

Category I: Continuum Mechanics

1. Let $\mathcal{V} = \mathbb{R}^3$. Consider the linear elastic equation $\rho_0 \frac{\partial^2}{\partial t^2} u = \nabla \cdot [A(\nabla u)]$ for $A \in \mathcal{V}^4$ (\mathcal{V}^4 is the four-fold tensor product of \mathcal{V}) and u a smooth vector field and $\rho_0 > 0$ a scalar constant. Let $\lambda, \mu > 0$ be fixed. Suppose that, for all $H \in \mathcal{V}^2$, we have $A(H) = \lambda(\operatorname{tr} H)I + \mu(H + H^T)$.

a. (10 points) Derive the Navier equation $\rho_0 \frac{\partial^2}{\partial t^2} u = \mu \triangle u + (\lambda + \mu) \nabla (\nabla \cdot u).$

b. (10 points) Assume the PDE is defined over \mathbb{R}^3 . Derive the solution for u(x, t) using Fourier analysis (no need to prove it is a classical solution, you're only asked to calculate). Assume u(x, 0) = f(x) and $\partial_t u(x, 0) = g(x)$, where f and g are smooth and compactly supported vector fields.

2. (20 points) Consider a body in material coordinates described by an open set $B \subset \mathbb{R}^3$. Let $x = \varphi(X, t) = \varphi_t(X)$ be the change from material coordinates X to spatial coordinates x, and let $\rho(x, t)$ define the density field in spatial coordinates. Assume conservation of mass holds. Prove that if $\Phi(x, t)$ is smooth and scalar-valued and $\Omega_t = \varphi_t(\Omega)$ is the time evolution of some open $\Omega \subset B$ that

$$\frac{d}{dt} \int_{\Omega_t} \Phi(x,t) \rho(x,t) dV_x = \int_{\Omega_t} \frac{d}{dt} \Phi(x,t) \ \rho(x,t) dV_x.$$

Here we denote $\frac{d}{dt}\Phi(x,t) := \frac{\partial}{\partial t} \Phi(\varphi(X,t),t) \Big|_{X = \varphi_t^{-1}(x)}$.

3. (20 points) Denote $\mathcal{V} = \mathbb{R}^3$ and $\mathcal{V}^2 = \mathcal{V} \otimes \mathcal{V}$ (3×3 matrices). Define $\Sigma : \mathcal{V}^2 \to \mathcal{V}^2$ by $\Sigma(A) = \operatorname{tr}(A)A$. Denote by $D\Sigma(A) \in \mathcal{V}^4$ the derivative of Σ at $A \in \mathcal{V}^2$. Prove that, for all $B \in \mathcal{V}^2$,

$$D\Sigma(A)B = \operatorname{tr}(B)A + \operatorname{tr}(A)B.$$

Category II: Fourier Analysis

4. Consider the inhomogeneous Helmholtz equation $(1 - \Delta)u(x) = f(x)$ for $x \in \mathbb{R}^d$. Here, $\Delta = \sum_{0 \le j \le d} \frac{\partial^2}{\partial x_j^2}$.

a. (10 points) Suppose $f \in \mathcal{S}(\mathbb{R}^d)$. Find u(x) that solves the PDE such that $u(x) \to 0$ as $|x| \to \infty$.

b. (10 points) Suppose $f_n \in \mathcal{S}(\mathbb{R}^d)$ and $f_n \to f$ in the $L^2(\mathbb{R}^d)$ norm sense (that is, $||f_n - f||_2 \to 0$ as $n \to \infty$). Suppose u_n is a solution to $(1 - \Delta)u_n(x) = f_n(x)$. Show $u_n \to u$ in the L^2 sense, and show u satisfies $\langle (1 - \Delta)\psi, u \rangle = \langle \psi, f \rangle$ for all $\psi \in \mathcal{S}(\mathbb{R}^d)$.

5. (20 points) Consider the Fourier transform $\mathcal{F} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ defined by $\mathcal{F}\psi(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i x \cdot \xi} \psi(x) dx$. Prove if $\phi(x) = e^{-\pi x^2}$ that $\mathcal{F}\phi(\xi) = \phi(\xi)$.

6. (20 points) Consider the PDE $-\nabla \cdot A \nabla u(x) + u(x) = f(x)$ for $f \in C_{\text{per}}^{\infty}([0,1]^3)$ where $A = A^*$ is a constant 3×3 matrix. Suppose A has eigenpairs $(v_i, \lambda_i)_{i=1}^3$ with eigenvalues $\lambda_i > 0$ for all *i*. Find the solution $u \in C_{\text{per}}^{\infty}([0,1]^3)$. Prove the smoothness of *u*.

Category III: Weak-form PDEs & Distribution Theory

7. (20 points) Prove that the Dirac delta-function is not equal as a distribution to any continuous function.

8. Define the Fourier transform of $\psi \in \mathcal{S}(\mathbb{R}^d)$ by $\mathcal{F}\psi(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i x \cdot \xi} \psi(x) dx$.

a. (10 points) Consider the delta-function as a tempered distribution $\delta \in \mathcal{S}'(\mathbb{R}^d)$. Find $\mathcal{F}\delta$.

b. (10 points) Find $\mathcal{F}(\mathcal{F}\delta)$.

9. (20 points) Define the space H_1 to be the closure of smooth functions u on [0, 1] such that u(0) = u(1) = 0 with respect to the norm $||f||_{H^1} = ||\frac{d}{dx}f||_2$ where $||\cdot||_2$ denotes the standard $L^2([0, 1])$ norm. Consider the inclusion operator $\iota : H_1 \to L^2([0, 1])$ defined by $\iota f = f$. Show ι is a compact operator, i.e. there is a sequence of finite rank operators ι_n such that $\iota_n \to \iota$ in operator norm. (This is a 1D Rellich-Kondrachov Theorem).