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Algebra Exam Syllabus

The Algebra comprehensive exam covers four broad areas of algebra: (1) Groups; (2) Rings; (3) Modules;
and (4) Linear Algebra. These topics are all covered in the first semester graduate algebra course Math 7200,
although the more elementary portions of linear algebra are covered in any undergraduate linear algebra
course, e.g., Math 4153. Questions from all four areas can be expected, with the major portion of the
questions coming from the 7000-level material.

Naturally, not every topic in the following detailed list will be on every exam. However, all listed topics
provide a potential source of questions. Examples of representative questions follow the syllabus. The exam
itself will consist of five questions (some exams may require one to do five out of six questions) similar to
the sample questions given below. In fact, many of these questions were extracted from one (or more) past
exams. You will have two and one-half hours to complete the exam.

Hint: In preparing for the exams, a candidate should become familiar with examples and counterex-
amples, and should develop a facility for computing with specific examples.

The following standard textbooks in algebra have been used in this department in recent years. References
to the relevant chapters of each are given in the detailed list of topics which follows. These texts are intended
only as examples where one may find the topics tested; the same topics may be found in many other books.
Moreover, there is substantial overlap in the texts. In fact, each of the texts contains most, if not all, of the
topics listed, plus many other topics.

Reference Texts

[A] M. Artin, Algebra, Prentice Hall, Englewood Cliffs, NJ, 1991.

[AW] W. A. Adkins and S. H. Weintraub, Algebra: An Approach via Module Theory, Graduate Texts in
Math. 136, Springer-Verlag, New York, 1992.

[H] T. W. Hungerford, Algebra, Graduate Texts in Math. 73, Springer-Verlag, New York, 1974.

[DF] Dummit & Foote: Abstract Algebra, 3rd edition, Wiley 2003.

Algebra Exam Syllabus

1. Group Theory. Groups, subgroups, normal subgroups, cosets, quotient groups, Lagrange’s theorem,
homomorphisms, Noether isomorphism theorems, abelian groups, center of a group, commutator subgroup,
direct products, fundamental theorem of finitely generated abelian groups as an application of the structure
theorem for finitely generated modules over a Euclidean Domain (See §3), Examples: cyclic groups, simple
groups, Sn (symmetric group), An (alternating group), dihedral groups, matrix groups, i.e., GL(n, k) and
its subgroups.

References: [A], Chapter 2; [AW], Chapter 1; [H], Chapter 1, §1–6, 8, Chapter 2, §1, 2; [DF], Chapter 1-4,
Sec. 5.1, 5.2.

2. Rings. Rings, subrings, homomorphisms, ideals, quotient rings, Noether isomorphism theorems for
rings, prime ideals, maximal ideals, units, divisibility, polynomial rings, principal ideal domains (PID’s) and
Euclidean domains: especially Z and k[X] for k a field, Euclidean algorithm and computation of greatest
common divisor, unique factorization in Euclidean domains and polynomial rings over Euclidean domains,
Gauss’s lemma, field of quotients of an integral domain, fields, construction of finite fields.

References: [A], Chapter 10, Chapter 11, §1–4; [AW], Chapter 2; [H], Chapter 3; [DF], Chapter 7 except
Sec. 7.6, Chapter 8, Sec. 9.1-9.5.

3. Modules. Modules, submodules, homomorphisms, quotient modules, Noether isomorphism theorems
for modules, direct sums and direct products, exact sequences, free modules, torsion modules, structure of
finitely generated modules over a Euclidean domain, especially over Z and k[X]: annihilator ideals, invariant
factors, elementary divisors, application to Jordan and rational canonical form for linear operators (see §4),
application to finitely generated abelian groups (see §1), diagonalization of integer matrices and application
to generators and relations for finitely generated abelian groups.

References: [A], Chapter 12; [AW], Chapter 3, §4.4, §5.1–5.4; [H], Chapter 4, [DF], Sec. 10.1-10.3, Chapter
12.
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4. Linear Algebra. (This will be covered only from the point of view of [DF] Chapter 12.) Vector
spaces, subspaces, quotient spaces, dual spaces, Hom (V, W ). Basis, dimension, linear transformations,
matrices, change of basis, determinants. Theory of a single linear operator: eigenvalues, eigenvectors, gener-
alized eigenvectors, similarity, diagonalization and triangularization of operators, functions of matrices and
operators, characteristic and minimum polynomials, Jordan canonical form, rational canonical form. (The
theory of a single linear transformation can (and probably should) be viewed as a special case of the structure
theorem for finitely generated k[X]-modules. See §3.)

5. Field Extensions. ([DF] 13.1, 13.2, 13.4, 13.5.)

Sample Algebra Questions

The following questions are representative of the type and difficulty of the questions which can be expected
on the comprehensive exam. For convenience, the problems are divided (very roughly) into the four divisions
listed under the syllabus. Some questions could just as easily be included in more than one subdivision.
Notation which will be standardized for all exercises is the following: N, Z, Q, R, C will denote respectively,
the natural numbers, the integers, the rational numbers, the real numbers, and the complex numbers. The
integers modulo n will be denoted Z/nZ, while Fq will refer to a finite field with q elements.

Group Theory

G1. Let H be a normal subgroup of a group G, and let K be a subgroup of H.
(a) Give an example of this situation where K is not a normal subgroup of G.
(b) Prove that if the normal subgroup H is cyclic, then K is normal in G.

G2. Prove that every finite group of order at least three has a nontrivial automorphism.

G3. (a) State the structure theorem for finitely generated abelian groups.
(b) If p and q are distinct primes determine the number of nonisomorphic abelian groups of order

p3q4.

G4. Let G = GL(2,Fp) be the group of invertible 2× 2 matrices with entries in the finite field Fp, where p
is a prime.
(a) Show that G has order (p2 − 1)(p2 − p).
(b) Show that for p = 2 the group G is isomorphic to the symmetric group S3.

G5. Let G be the group of units of the ring Z/247Z.
(a) Determine the order of G (note that 247 = 13 · 19).
(b) Determine the structure of G (as in the classification theorem for finitely generated abelian

groups). Hint: Use the Chinese Remainder Theorem.

G6. Let G be the group of invertible 2 × 2 upper triangular matrices with entries in R. Let D ⊆ G be
the subgroup of invertible diagonal matrices and let U ⊆ G be the subgroup of matrices of the form[
1 x
0 1

]
where x ∈ R is arbitrary.

(a) Show that U is a normal subgroup of G and that G/U is isomorphic to D.
(b) True or False (with justification): G ∼= U ×D

G7. Let G be a group and let Z denote the center of G.
(a) Show that Z is a normal subgroup of G.
(b) Show that if G/Z is cyclic, then G must be abelian.
(c) Let D6 be the dihedral group of order 6. Find the center of D6.

G8. List all abelian groups of order 8 up to isomorphism. Identify which group on your list is isomorphic
to each of the following groups of order 8. Justify your answer.
(a) (Z/15Z)∗ = the group of units of the ring Z/15Z.
(b) The roots of the equation z8 − 1 = 0 in C.
(c) F+

8 = the additive group of the field F8 with eight elements.

G9. Let S9 denote the symmetric group on 9 elements.
(a) Find an element of S9 of order 20.
(b) Show that there is no element of S9 of order 18.

G10. G =

{[
a b
0 a−1

]
: a, b ∈ R, a > 0

}
and N =

{[
1 c
0 1

]
: c ∈ R

}
are groups under matrix multiplication.

(a) Show that N is a normal subgroup of G and that G/N is isomorphic to the multiplicative group
of positive real numbers R+.
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(b) Find a group N ′ with N ⊆ N ′ ⊆ G, with both inclusions proper, or prove that no such N ′ exists.

G11. Let R be a commutative ring with identity, and let H be a subgroup of the group of units R∗ of
R. Let N = {A ∈ GL(n, R) : detA ∈ H}. Prove that N is a normal subgroup of GL(n, R) and
GL(n, R)/N ∼= R∗/H.

G11. Let G be a group of order 2p where p is an odd prime. If G has a normal subgroup of order 2, show
that G is cyclic.

G12. Prove that every finitely generated subgroup of the additive group of rational numbers is cyclic.

G13. Prove that any finite group of order n is isomorphic to a subgroup of the orthogonal group O(n, R).
G14. Prove that the group GL(2,R) has cyclic subgroups of all orders n ∈ N. (Hint: The set of matrices[

a b
−b a

]
where a and b are arbitrary real numbers, is a subring of the ring of 2× 2 matrices which is

isomorphic to C.)
G15. Let H1 be the subgroup of Z2 generated by {(1, 3), (1, 7)} and let H2 be the subgroup of Z2 generated

by {(2, 4), (2, 6)}. Are the quotient groups G1 = Z2/H1 and G2 = Z2/H2 isomorphic?

G16. Let H and N be subgroups of a group G with N normal. Prove that HN = NH and that this set is
a subgroup of G.

G17. Let G = Z/2Z⊕Z/6Z⊕Z/30Z and let H = Z/4Z⊕Z/20Z. Express the abelian group Hom(G,H) of
homomorphisms from G to H as a direct sum of cyclic groups.

G18. Let G be an abelian group generated by x, y, z subject to the relations

15x+ 3y = 0

3x+ 7y + 4z = 0

18x+ 14y + 8z = 0

(a) Write G as a product of two cyclic groups.
(b) Write G as a direct product of cyclic groups of prime power order.
(c) How many elements of G have order 2?

G19. Let F be a field and let

H(F) =


1 a b
0 1 c
0 0 1

 : a, b, c ∈ F

 .

(a) Verify that H(F) is a nonabelian subgroup of GL(3, F).
(b) If |F| = q, what is |H(F)|?
(c) Find the order of all elements of H(Z/2Z).
(d) Verify that H(Z/2Z) ∼= D8, the dihedral group of order 8.

G20. Let R be an integral domain and let G be a finite subgroup of R∗, the group of units of R. Prove that
G is cyclic.

G21. Let α and β be conjugate elements of the symmetric group Sn. Suppose that α fixes at least two
symbols. Prove that α and β are conjugate via an element γ of the alternating group An.

G22. Are (1 3)(2 5) and (1 2)(4 5) conjugate in S5? If you say “yes”, find an element giving the conjugation;
if you say “no”, prove your answer.

G23. (a) Suppose that G is a group and a, b ∈ G are elements such that the order of a is m and the order
of b is n. If ab = ba and if m and n are relatively prime, show that the order of ab is mn.

(b) Prove that an abelian group of order pq, where p and q are distinct primes, must be cyclic.
(c) If m and n are relatively prime, must a group of order mn be cyclic? Justify your answer.

G24. Let φ : G → H be a surjective group homomorphism and let N be a normal subgroup of G. Show that
φ(N) is a normal subgroup of H. What happens if φ is not surjective? Explain your answer.

G25. Let Q = {1, −1, i, −i, j, −j, k, −k} be the quaternion group and N = {1, −1, i, −i}. Show that N
is a normal subgroup of Q. Describe the quotient group Q/N .

G26. Let G be a finite abelian group of odd order. If φ : G → G is defined by φ(a) = a2 for all a ∈ G, show
that φ is an isomorphism. Generalize this result.

G27. Prove that the direct product of two infinite cyclic groups is not cyclic.

G28. Prove that if a group has exactly one element of order two, then that element is in the center of the
group.

G29. Prove that a group of order 30 can have at most 7 subgroups of order 5.
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G30. Let H = {1, −1, i, −i} be the subgroup of the multiplicative group G = C∗ = C\{0} consisting of the
fourth roots of unity. Describe the cosets of H in G, and show that the quotient G/H is isomorphic
to G.

G31. (a) Show that the set of all elements of finite order in an abelian group form a subgroup.
(b) Let G = R/Z. Show that the set of elements of G of finite order is the subgroup Q/Z.

G32. Determine all the finite groups which have exactly 3 conjugacy classes.

G33. (a) Find a Sylow 2-subgroup of S4 and identify its isomorphism type.
(b) How many Sylow 2-subgroups of S4 are there? Please justify your answer.

G34. (a) Determine the number of Sylow p-subgroups of S5 for each prime factor p of |S5|. Please prove
your assertion.

(b) Identify the isomorphism type of each Sylow p-subgroup of S5. Please prove your assertion.

G35. Let p < q be prime numbers such that p | (q − 1). Show there exists a unique nonabelian group of
order pq up to isomorphism.

G36. (a) Define what it means for a group G to act on a set A.
(b) The group GL2(C) acts by left-multiplication on the set of matrices M2,5(C). Describe the orbits.

How many are there?

Ring Theory

R1. Let R = Z[
√
−3] = {a+ b

√
−3 : a, b ∈ Z}.

(a) Why is R an integral domain?
(b) What are the units in R?
(c) Is the element 2 irreducible in R?
(d) If x, y ∈ R, and 2 divides xy, does it follow that 2 divides either x or y? Justify your answer.

R2. (a) Give an example of an integral domain with exactly 9 elements.
(b) Is there an integral domain with exactly 10 elements? Justify your answer.
R3. Let

F =

{[
a b
2b a

]
: a, b ∈ Q

}
.

(a) Prove that F is a field under the usual matrix operations of addition and multiplication.

(b) Prove that F is isomorphic to the field Q(
√
2).

R3. Let F be a field and let R = F[X, Y ] be the ring of polynomials in X and Y with coefficients from F.
(a) Show that M = ⟨X + 1, Y − 2⟩ is a maximal ideal of R.
(b) Show that P = ⟨X + Y + 1⟩ is a prime ideal of R.
(c) Is P a maximal ideal of R? Justify your answer.

R4. Let R be an integral domain containing a field k as a subring. Suppose that R is a finite-dimensional
vector space over k, with scalar multiplication being the multiplication in R. Prove that R is a field.

R5. Let R be a commutative ring with identity and let I and J be ideals of R.
(a) Define

(I : J) = {r ∈ R : rx ∈ I for all x ∈ J}.

Show that (I : J) is an ideal of R containing I.
(b) Show that if P is a prime ideal of R and x /∈ P , then (P : ⟨x⟩) = P , where ⟨x⟩ denotes the

principal ideal generated by x.
(a) Define what is meant by the sum I + J and the product IJ of the ideals I and J .
(b) If I and J are distinct maximal ideals, show that I + J = R and I ∩ J = IJ .

R6. Let F2 be the field with 2 elements.
(a) Show that f(X) = X3 +X2 + 1 and g(X) = X3 +X + 1 are the only irreducible polynomials of

degree 3 in F2[X].
(b) Give an explicit field isomorphism

F2[X]/⟨f(X)⟩ ∼= F2[X]/⟨g(X)⟩.

R7. Show that Z[i]/⟨1 + i⟩ is isomorphic to the field F2 with 2 elements. As usual, i denotes the complex
number

√
−1 and ⟨1 + i⟩ denotes the principal ideal of Z[i] generated by 1 + i.

R8. Consider the ring Z[X] of polynomials in one variable X with coefficients in Z.
(a) Find all the units of Z[X].
(b) Describe an easy way to recognize the elements of the ideal I of Z[X] generated by 2 and X.
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(c) Find a prime ideal of Z[X] that is not maximal.

R9. Determine, with justification, all of the irreducible polynomials of degree 4 over the field F2 of two
elements.

R10. Let R = Z[
√
−10].

(a) Show that R is not a PID. (Hint: Show that 10 admits two essentially different factorizations into
irreducible elements of R.)

(b) Let P = ⟨7, 5 +
√
−10⟩. Show that R/P is isomorphic to Z/7Z.

R11. Suppose that R is an integral domain and X is an indeterminate.
(a) Prove that if R is a field, then the polynomial ring R[X] is a PID (principal ideal domain).
(b) Show, conversely, that if R[X] is a PID, then R is a field.

R12. (a) Prove that every Euclidean domain is a principal ideal domain (PID).
(b) Give an example of a unique factorization domain that is not a PID and justify your answer.

R13. (a) Show that for each natural number n ∈ N, there is an irreducible polynomial Pn(X) ∈ Q[X] of
degree n.

(b) Is this true when Q is replaced by R? Explain.

R14. Let R be a commutative ring with identity. If I ⊆ R is an ideal, then the radical of I, denoted
√
I, is

defined by √
I = {a ∈ R : an ∈ I for some positive integer n} .

(a) Prove that
√
I ∩ J =

√
I ∩

√
J .

(b) If P is a prime ideal of R and r ∈ N, find
√
P r and justify your answer.

(c) Find
√
I, where I is the ideal ⟨108⟩ in the ring Z of integers.

R15. (a) Show that Z[i]/⟨3 + i⟩ ∼= Z/10Z, where i is the usual complex number
√
−1.

(b) Is ⟨3 + i⟩ a maximal ideal of Z[i]? Give a reason for your answer.

R16. Let R = Z[X]. Answer the following questions about the ring R. You may quote an appropriate
theorem, provide a counterexample, or give a short proof to justify your answer.
(a) Is R a unique factorization domain?
(b) Is R a principal ideal domain?
(c) Find the group of units of R.
(d) Find a prime ideal of R which is not maximal.
(e) Find a maximal ideal of R.

R17. An element a in a ring R is nilpotent if an = 0 for some natural number n.
(a) If R is a commutative ring with identity, show that the set of nilpotent elements forms an ideal.
(b) Describe all of the nilpotent elements in the ring C[X]/⟨f(X)⟩, where

f(X) = (X − 1)(X2 − 1)(X3 − 1).

(c) Show that part (a) need not be true if R is not commutative. (Hint: Try a matrix ring.)

R18. Let R be a ring, let R∗ be the set of units of R, and let M = R \ R∗. If M is an ideal, prove that M
is a maximal ideal and that moreover it is the only maximal ideal of R.

R19. (a) Let R be a PID and let I, J be nonzero ideals of R. Show that IJ = I∩J if and only if I+J = R.
(b) Show that Z/900Z is isomorphic to Z/100Z⊕ Z/9Z as rings.
(a) Let I = ⟨X2 + 2, 5⟩ ⊆ Z[X] and let J = ⟨X2 + 2, 3⟩. Show that I is a maximal ideal, but J is

not a maximal ideal.

R20. Let F be a subfield of a field K and let f(X), g(X) ∈ F [X] \ {0}. Prove that the greatest common
divisor of f(X) and g(X) in F [X] is the same as the greatest common divisor taken in K[X].

R21. Find the greatest common divisor of X3 − 6X2 +X + 4 and X5 − 6X + 1 in Q[X].

R22. Define φ : C[X, Y ] → C[T ] by φ(X) = T 2, φ(Y ) = T 3.
(a) Show that Ker(φ) = ⟨Y 2 −X3⟩.
(b) Find the image of φ.

R23. Prove that Z[
√
−2] is a Euclidean domain.

R24. Let m, n be two non-zero integers. Prove that the greatest common divisor of m and n in Z is the
same as the greatest common divisor taken in Z[i]. Generalize this to a statement about the greatest
common divisor of elements a and b in a Euclidean domain R which is a subring of a Euclidean domain
S.

R25. Prove that the center of the matrix ring Mn(R) is the set of scalar matrices, i.e., C(Mn(R)) = {aIn :
a ∈ R}.
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R26. Let R1 = Fp[X]/⟨X2 − 2⟩ and R2 = Fp[X]/⟨X2 − 3⟩ where Fp is the field of p elements, p a prime.
Determine if R1 is isomorphic to R2 in each of the cases p = 2, p = 5, and p = 11.

R27. (a) Show that the only automorphism of the field R of real numbers is the identity.
(b) Show that any automorphism of the field C of complex numbers which fixes R is either the identity

or complex conjugation.

R28. (a) Find all ideals of the ring Z/24Z.
(b) Find all ideals of the ring Q[X]/⟨X2 + 2X − 2⟩.

R29. Let R be an integral domain. Show that the group of units of the polynomial ring R[X] is equal to the
group of units of the ground ring R.

R30. Express the polynomial X4−2X2−3 as a product of irreducible polynomials over each of the following
fields: Q, R, C, F5.

R31. Let ω = (1 +
√
−3)/2 ∈ C and let R = {a+ bω : a, b ∈ Z}.

(a) Show that R is a subring of C.
(b) Show that R is a Euclidean domain with respect to the norm function N(z) = zz, where, as usual,

z denotes the complex conjugate of z.

R32. Let I be an ideal of R[X] generated by an irreducible polynomial of degree 2. Show that R[X]/I is
isomorphic to the field C.

R33. Show that in the ring M of 2 × 2 real matrices (with the usual sum and multiplication of matrices),
the only 2-sided ideals are ⟨0⟩ and the whole ring M .

R34. Let R be a commutative ring with identity. Suppose a ∈ R is a unit and b ∈ R is nilpotent. Show that
a+ b is a unit.

R35. (b) Let R and S be commutative rings with identities 1R and 1S , respectively, let f : R → S be a
ring homomorphism such that f(1R) = 1S . If P is a prime ideal of S show that f−1(P ) is a prime
ideal of R.

(c) Let f be as in part (b). If M is a maximal ideal of S, is f−1(M) a maximal ideal of R? Prove
that it is or give a counterexample.

R36. (a) Let H be the ring of quaternions, q = a+bi+cj+dk, where i2 = j2 = k2 = ijk = −1,, a, b, c, d ∈ R.
Let q∗ = a− bi− cj− dk and ||q||2 = qq∗ = a2+ b2+ c2+ d2. Show that the set H1 of quaternions
with ||q|| = 1 is a group under quaternion multiplication. Hint: show (q1q2)

∗ = q∗2q
∗
1 and use

q∗∗ = q, a∗ = a for a ∈ R.
(b) Show that the map

H → M2(C), q = a+ bi+ cj+ dk 7→ M(q) :=

[
a+ bi c+ di
−c+ di a− bi

]
i =

√
−1,

is an R-algebra homomorphism, and that ||q||2 = detM(q).

R37. Let H → M2(C) be the ring homomorphism of part (b) of problem R40. Show that this induces an
isomorphism

H1
∼= SU2 = {T ∈ M2(C) | T tT̄ = I2,detT = 1}.

R38. Let H1 → SU2 be the isomorphism of R41. For each q ∈ H1, define a map R3 → R3 :

v =

a
b
c

 7→ Rq(v) =

a′

b′

c′


by the rule q(ai+bj+ck)q∗ = a′i+b′j+c′k. Show that this makes sense: the quaternion q(ai+bj+ck)q∗

has only i, j,k components. The map v 7→ Rq(v) is clearly an invertible R-linear map, hence an element
of GL(3,R). Now show that it preserves the dot-product of vectors in R3, (a1, b1, c1) · (a2, b2, c2) =
a1a2 + b1b2 + c1c2, that is

Rq(v1) ·Rq(v2) = v1 · v2.

Hint: Let quat(a, b, c) = ai+ bj+ ck, then

v1 · v2 = [quat(v1)quat(v2)
∗ + quat(v2)quat(v1)

∗]/2.

Therefore Rq ∈ SO3(R) = {T ∈ M3(R) | T tT = I3,detT = 1}.
R39. Show that the map q 7→ Rq is a homomorphism H1 → SO(3,R), i.e., Rq1q2 = Rq1Rq2 . Show that it

induces an isomorphism SU2/± 1 ∼= SO(3,R).
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Module Theory

M1. Let Z
[
1
2

]
denote the subring of Q generated by Z and 1

2 . Is Z
[
1
2

]
finitely generated as a Z-module?

Justify your answer.

M2. Let Z
[
1
2

]
denote the subring of Q generated by Z and 1

2 . Prove or disprove: Z
[
1
2

]
is a free Z-module.

M3. (a) Show that Q is a torsion-free Z-module.
(b) Is Q a free Z-module? Justify your answer.

M4. Show that Z/3Z is a Z/6Z-module and conclude that it is not a free Z/6Z-module.

M5. Let N be a submodule of an R-module M . Show that if N and M/N are finitely generated, then M
is finitely generated.

M6. Let G be the abelian group with generators x, y, and z subject to the relations

5x+ 9y + 5z = 0

2x+ 4y + 2z = 0

x+ y − 3z = 0.

Determine the elementary divisors of G and write G as a direct sum of cyclic groups.

M7. Let R be a ring and let f : M → N be a surjective homomorphism of R-modules, where N is a free
R-module. Show that there exists an R-module homomorphism g : N → M such that f ◦ g = 1N .
Show that M = Ker(f)⊕ Im(g).

M8. Let R be an integral domain and let M be an R-module. A property P of M is said to be hereditary if,
whenever M has property P , then so does every submodule N of M . Which of the following properties
of M are hereditary? If a property is hereditary, give a brief reason. If it is not hereditary, give a
counterexample.
(a) Free
(b) Torsion
(c) Finitely generated

M9. Let R be an integral domain. Determine if each of the following statements about R-modules is true
or false. Give a proof or counterexample, as appropriate.
(a) A submodule of a free module is free.
(b) A submodule of a free module is torsion-free.
(c) A submodule of a cyclic module is cyclic.
(d) A quotient module of a cyclic module is cyclic.

M10. Let M be an R-module and let f : M → M be an R-module endomorphism which is idempotent, that
is, f ◦ f = f . Prove that M ∼= Ker(f)⊕ Im(f).

M11. Prove that HomZ(Z/nZ,Z/mZ) ∼= Z/dZ, where d is the greatest common divisor of n and m.

M12. Compute HomZ(Z, Q) and HomZ(Q, Z).
M13. Let R be a commutative ring with 1 and let I and J be ideals of R. Prove that R/I ∼= R/J as

R-modules if and only if I = J . Suppose we only ask that R/I and R/J be isomorphic as rings. Is the
same conclusion valid? (Hint: Consider F [X]/⟨X − a⟩ for a ∈ F .)

M14. Let M ⊆ Zn be a Z-submodule of rank n. Prove that Zn/M is a finite group.

M15. Let G, H, and K be finite abelian groups. If G×K ∼= H ×K, then prove that G ∼= H.

M16. Let G be an abelian group and K a subgroup. For each of the following statements, decide if it is true
or false. Give a proof or provide a counterexample, as appropriate.
(a) If G/K ∼= Z2, then G ∼= K ⊕ Z2.
(b) If G/K ∼= Z/2Z, then G ∼= K ⊕ Z/2Z.

M17. Let F be a field and let V and W be vector spaces over F . Make V and W into F [X]-modules via
linear operators T on V and S on W by defining X · v = T (v) for all v ∈ V and X · w = S(w) for all
w ∈ W . Denote the resulting F [X]-modules by VT and WS respectively.
(a) Show that an F [X]-module homomorphism from VT to WS consists of an F -linear transformation

R : V → W such that RT = SR.
(b) Show that VT

∼= WS as F [X]-modules if and only if there is an F -linear isomorphism P : V → W
such that T = P−1SP .

M18. Let G = Z/4Z⊕Z/6Z⊕Z/9Z⊕Z/10Z. Determine the elementary divisors and invariant factors of G.

M19. (a) Find a basis and the invariant factors of the submodule N of Z2 generated by x = (−6, 2),
y = (2,−2) and z = (10, 6).

(b) From your answer to part (a), what is the structure of Z2/N?
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M20. Let R be a ring and let M be a free R module of finite rank. Prove or disprove each of the following
statements.
(a) Every set of generators contains a basis.
(b) Every linearly independent set can be extended to a basis.

M21. Let R be a ring. An R-module N is called simple if it is not the zero module and if it has no submodules
except N and the zero submodule.
(a) Prove that any simple module N is isomorphic to R/M , where M is a maximal ideal.
(b) Prove Schur’s Lemma: Let φ : S → S′ be a homomorphism of simple modules. Then either φ is

zero, or it is an isomorphism.

M22. (a) Give an example of a prime ideal in a ring that is not maximal.
(b) Describe Spec(C[x]) (polynomial ring in one variable over the complex numbers).
(c) Describe Spec(R[x]).

Linear Algebra

L1. Let V be a vector space of dimension 3 over C. Let {v1, v2, v3} be a basis for V and let T : V → V
be the linear transformation defined by T (v1) = 0, T (v2) = −v1, and T (v3) = 5v1 + v2.
(a) Show that T is nilpotent.
(b) Find the Jordan canonical form of T .
(c) Find a basis of V such that the matrix of T with respect to this basis is the Jordan canonical

form of T .

L2. Let p be a prime number and let V be a 2-dimensional vector space over the field Fp with p elements.
(a) Find the number of linear transformations T : V → V .
(b) Find the number of invertible linear transformations T : V → V .

L3. Let T : Rn → Rn be a linear transformation, with minimal polynomial mT (X) in R[X]. Assume
that mT (X) factors in R[X] as f(X)g(X) with f(X) and g(X) relatively prime. Show that Rn can
be written as a direct sum Rn = U ⊕ V , where U and V are T -invariant subspaces with T |U having
minimal polynomial f(X) and T |V having minimal polynomial g(X).

L4. Let T : Cn → Cn be a nilpotent linear transformation.
(a) How is dimKerT related to the Jordan normal form of T? How is the minimal polynomial related

to the Jordan normal form?
(b) Let T , S : C6 → C6 be nilpotent linear transformations such that S and T have the same minimal

polynomial and dimKerT = dimKerS. Show that S and T have the same Jordan form.
(c) Show that there are nilpotent linear transformations T , S : C8 → C8 such that S and T have the

same minimal polynomial and dimKerT = dimKerS, but S and T have different Jordan forms.
That is, part (b) is false if 6 is replaced by 8.

L5. Let F be a field and let
0 −→ V1

T1−→V2
T2−→· · · Tn−→Vn+1 −→ 0

be an exact sequence of finite-dimensional vector spaces and linear transformations over F. This means
that T1 is injective, Tn is surjective, and Im(Ti) = Ker(Ti+1) for 1 ≤ i ≤ n− 1. Show that

n−1∑
i=1

(−1)i+1 dimVi = 0.

L6. Let S and T be linear transformations between finite-dimensional vector spaces V and W over the field
F. Show that KerS = KerT if and only if there is an invertible operator U on W such that S = UT .

L7. Let V be a finite-dimensional real vector space and let T : V → V be a nilpotent transformation (i.e.
T j = 0 for some positive integer j).
(a) Find the eigenvalues of T .
(b) Is I − T invertible, where I : V → V is the identity transformation? Explain fully.
(c) Give an example of two non-similar linear transformations A and B on the same finite dimensional

vector space V , having identical characteristic polynomials and identical minimal polynomials.

L8. Let V be the vector space of polynomials p(X) ∈ C[X] of degree ≤ 4. Define a linear transformation
T : V → V by T (p(X)) = p′′(X) (the second derivative of the polynomial p(X)). Compute the
characteristic polynomial, minimal polynomial, and Jordan canonical form of the linear transformation
T .

L9. Let p be a prime number, Fp = Z/pZ the field with p elements, V = F4
p (a 4-dimensional vector space

over Fp), and W the subspace of V spanned by the three vectors a1 = (1, 2, 2, 1), a2 = (0, 2, 0, 1), and
a3 = (−2, 0,−4, 3). Find dimFp

W . (Note that this dimension depends on p.)
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