
Math 7382: Qualifying Exam Syllabus

This core course covers four main topics: tensor algebra and calculus, continuum mechan-
ics, Fourier analysis, and weak-form differential equations. The first of these is by way of
reviewing and establishing elementary tools from vector calculus and linear algebra, which
are used in three subsequent topics. They might not be tested specifically on the qualifier
exam, but the techniques appear prominently in the problems.
The problems in the test bank are marked according to their pertinence to three categories:
(1) continuum mechanics, (2) Fourier analysis, and (3) distributions and weak-form differ-
ential equations. Some problems pertain to multiple categories. More specifically, the three
categories cover the following material.

1. Equations of Continuum Physics

(a) Fluid mechanics and acoustics

(b) Solid mechanics: elasticity

(c) Electricity and Magnetism

(d) Helmholtz decomposition

2. Fourier Analysis

(a) Fourier series

(b) Fourier transform

(c) Classical solutions to PDE

(d) Initial-value problems

(e) Sobolev embedding theorem

3. Weak-form Differential Equations

(a) Hilbert space

(b) Distributions

(c) Weak-form PDE



Math 7382: Qualifying Exam Problem Bank
1. (Category: 3)
Let Ω ⊂ R3 be bounded with C1 boundary.

a. Suppose u, v ∈ C2(R3). Show
ˆ
Ω

(u△v − v△u)dV =

ˆ
∂Ω

(
u∇v − v∇u

)
· n dS

where n is the outward facing normal to the surface ∂Ω.

b. For y ∈ Ω define Gy(x) =
1

4π|x−y| , and note that △Gy = δy in the sense of distributions.
For ϕ ∈ C∞

c (Ω) a test function, δy is defined by ⟨δy, ϕ⟩ = ϕ(y). If v ∈ C2(R3) satisfying
△v = 0, show

v(y) = −
ˆ
∂Ω

(Gy(x)∇v(x)− v(x)∇Gy(x)) · n dSx.

2. (Category: 1, 3)

a. Prove the identity for Φ,Ψ ∈ C1(R3;R3):

∇ · (Ψ× Φ) = Φ · (∇×Ψ)− (∇× Φ) ·Ψ.

b. Consider simply connected open domain Ω = Ω1 ∪ Ω2, where Ω1 and Ω2 are disjoint
simply connected open sets. Let Γ be the boundary between Ω1 and Ω2. Consider the curl
operator in the sense of distributions denoted ∇× on C∞

c (Ω;R3). Let F be defined such that
F (x) = Fj(x) for x ∈ Ωj where Fj ∈ C2(Ωj;R3). Let [F ](x) := F2(x)− F1(x) for x ∈ Γ. Let
N(x) be the normal vector for x ∈ Γ aiming into Ω2. Prove

∇× F = ∇× F1

∣∣∣∣
Ω1

+∇× F2

∣∣∣∣
Ω2

+N × [F ]δΓ.

For a function G(x), the distribution GδΓ is defined such that ⟨GδΓ,Φ⟩ =
´
Γ
G · Φ.

3. (Category: 2)
Consider the PDE −△u+ γu = f for f ∈ S(R3) and γ > 0 a scalar.

a. Compute the solution u(x) using Fourier analysis (no need to prove it is a solution in
this part).



b. Prove u ∈ S(Rd), and conclude it is a classical solution to the PDE. Hint: if v ∈ S(R3),
then pv ∈ S(R3) for any polynomial p.

4. (Category: 1,2)
Let V = R3. Consider the linear elastic equation

ρ0
∂2

∂t2
u = ∇ · [A(∇u)] (1)

for A ∈ V4 and u a smooth vector field and ρ0 > 0 a constant. Suppose if H ∈ V2 and
λ, µ > 0,

A(H) = λ(tr H)I + 2µ Sym(H). (2)

a. Derive the Navier equation

ρ0
∂2

∂t2
u = µ△u+ (λ+ µ)∇(∇ · u).

b. Assume the PDE is defined over R3. Derive the solution for u(x, t) using Fourier
analysis (no need to prove it is a classical solution, you’re only asked to calculate).
Assume u(x, 0) = f(x) and ∂tu(x, 0) = g(x) for f and g smooth and compactly supported
vector fields.

5. (Category: 1)
Suppose B = R3 and the body force is 0. Let {ei}i be an orthonormal coordinate frame.
In this problem, assume all the initial value problems discussed have solutions, and all fields
are smooth. Consider the Cauchy stress tensor corresponding to pure shear stress given by

S(x, t) = f ◦ ρ(x, t)P , P = e1 ⊗ e2 + e2 ⊗ e1.

Here ◦ is function composition, and f(·) is scalar-valued.
a. Find a family of disjoint planes Γλ ⊂ B for λ ∈ R such that B = ∪λΓλ with normal

field denoted nλ(x) for x ∈ Γλ such that S(x, t)nλ(x) = 0 for all x ∈ Γλ.

b. Suppose the body force is 0 and initial velocity is zero such that the continuum
dynamics is given by the initial value problem in spatial coordinates

∂tρ(x, t) +∇x · (ρ(x, t)v(x, t)) = 0, ρ(x, t)
d

dt
v(x, t) = ∇x · S(x, t),

ρ(x, 0) = ρ0(x), v(x, 0) = 0



where for flow map φ(X, t) over material coordinates, we denote spatial coordinates x =
φ(X, t) with velocity field v(x, t) = d

dt
x = ∂tφ(X, t).

Find Lλ : R2 → Γλ parameterization of the surface Γλ, and suppose

pλ(y, t) := ρ(Lλy, t), νλ(y, t) := v(Lλy, t). (3)

Find an initial value problem in pλ and νλ, and verify that solutions to your choice of family
of PDEs in R2 combine via (3) to yield solutions to the initial value problem over the whole
body given above. This is an example of dimensional reduction.

6. (Category: 1)
For deformation map φ(X, t), we define F (X, t) = ∇Xφ(X, t), spatial coordinates where
x = φ(X, t), and spatial velocity field v(x, t) = ∂tφ(X, t).

a. Prove
∂

∂t
detF (X, t) = detF (X, t)(∇x · v)(x, t)

∣∣∣∣
x=φ(X,t)

.

b. Prove
d

dt
v(x, t) =

∂

∂t
v(x, t) + (∇xv(x, t)) v(x, t)

where d
dt

is understood as the partial time derivative of fields in material coordinates (X, t).

7. (Category: 1)
Define a body Bt with density field ρ(x, t), Cauchy stress tensor S(x, t), and body force
ρ(x, t)b(x, t) written as spatial fields. Assume all fields are smooth. Consider kinetic energy
of Ωt ⊂ Bt defined as

K[Ωt] =

ˆ
Ωt

1

2
ρ(x, t) v(x, t) · v(x, t)dVx.

Consider the following balance equations in spatial coordinates

ρ
d

dt
v = ∇x · S + ρb, ∂tρ+∇x · (ρv) = 0, S = ST .

Here d
dt

is understood as the partial derivative in time in material coordinates.

a. Prove
∇x · (STv) = (∇x · S) · v + S : ∇xv.



b. Prove that for any Ωt = φt(Ω), Ω ⊂ B open, then
ˆ
Ωt

ρv · d
dt
v dVx +

ˆ
Ωt

S : sym(∇xv) dVx =

ˆ
∂Ωt

v · Sn dAx +

ˆ
Ωt

ρb · v dVx

8. (Category: 1)

a. Suppose v ∈ C∞(R3;V) such that there exists ψ ∈ C∞(R2 × R+) where

v(x, t) = ∇⊥ψ(x1, x2, t) = ∂2ψ(x1, x2, t)e1 − ∂1ψ(x1, x2, t)e2.

Show there is a scalar field f(x1, x2, t) such that

∇x × v = fe3, f = −△xψ.

b. Consider the balance of linear momentum equation for Navier-Stokes with no body
force (assume p smooth):

ρ0(∂tv + (∇xv)v) = µ△xv −∇xp.

We denote ∇xf = ∂x1fe1 + ∂x2fe2. Derive

∂tf + v · ∇xf =
µ

ρ0
△xf

9. (Category: 1)
Let the vector fields E and H in R3 (with coordinates (x1, x2, x3)) satisfy the free harmonic
Maxwell system

∇× E = iωµH (4)
∇×H = −iωϵE (5)

Suppose that E and H are independent of x3, that H is perpendicular to the (x1, x2)-plane,
and that ϵ and µ are smooth scalar functions of x1 and x2 alone, and ϵ(x1, x2) ̸= 0. Show
that the Maxwell system can be reduced to a single scalar second-order PDE for H.

10. (Category: 1)



Consider an invertible smooth map

φ : (0, 1)3 → W ⊂ R3

satisfying det∇Xφ(X) > 0. Consider the set of integers Z/N = {1, 2, · · ·N}. Let GN =
(Z/N)3 and define

PN = {( i1
N
,
i2
N
,
i3
N
) : (i1, i2, i3) ∈ GN},

a discretization of the cube. This can be considered a reference configuration. Suppose a
point charge is placed at each point with charge qN = Q

N3 for Q constant. Then we define a
distribution ρN ∈ D′(W ) corresponding to charge density given by

ρN :=
∑
p∈PN

qN δφ(p)

where ⟨δx, ϕ⟩ := ϕ(x) for ϕ ∈ C∞
c (W ). Show ρN → ⟨ρ, ·⟩ ∈ D′ for some ρ ∈ C(W ). Find ρ.

11. (Category: 2)
Consider the Fejér Kernel given by {FN}∞N=1 where

FN(x) =
1

N

N−1∑
j=0

Dj(x), Dj(x) =
N∑

n=−N

e−2πixn.

Prove that the Fejér Kernel is a good kernel, and

FN(x) =
1

N

sin2(Nπx)

sin2(πx)
.

12. (Category: 2)

a. Suppose f ∈ C
(k)
per([−1/2, 1/2]), i.e. k-times continuously differentiable and periodic.

Recall

f̂(n) = ⟨f, ϕn⟩, ϕn(x) = e−2πixn.

Show for n ̸= 0 that there exists a constant C > 0 such that

|f̂(n)| ≤ C|n|−k.



b. Prove if k > 1 that the partial Fourier sum SN(f) → f pointwise uniformly on

x ∈ [−1/2, 1/2].

13. (Category: 2)
Suppose g ∈ C(R) be periodic with period 1, i.e. g(x + 1) = g(x) ∀x ∈ R. Let α ∈ R be
irrational. Define the sequence

GN =
1

2N + 1

N∑
n=−N

g(αn).

Prove

GN →
ˆ 1/2

−1/2

g(x)dx as N → ∞.

14. (Category: 2)
For 1 ≤ p <∞, the discrete ℓp space is defined as

ℓp(Z3) = {g : Z3 → C : ∥g∥p =
( ∑

n∈Z3

|g(n)|p
)1/p

<∞}.

Consider F : L2([−1/2, 1/2]3) → ℓ2(Z3) be defined such that

Ff(n) = ⟨f, ϕn⟩, ϕn(x) = e−2πn·x.

The Plancherel identity gives
∥Ff∥2 = ∥f∥2

where on the left we mean the discrete-ℓ2 norm and on the right the continuous L2 norm.
The discrete inner product for ℓ2 is given by

⟨a, b⟩ =
∑
n∈Z3

anb̄n, a, b ∈ ℓ2(Z3).

a. Show if f, g ∈ L2([−1/2, 1/2]3) that

⟨Ff,Fg⟩ = ⟨f, g⟩.



On the left-hand side we mean the discrete ℓ2 inner product, and on the right the continuous
L2 inner product.

b. We define the discrete convolution as follows: if a, b ∈ ℓ1(Z3), then

a ∗ b(n) =
∑
m∈Z3

a(n−m)b(m).

Show a ∗ b ∈ ℓ1(Z3).

c. Suppose f, g ∈ L2([−1/2, 1/2]3). Show

F(fg) = Ff ∗ Fg ∈ ℓ∞(Z3).

15. (Category: 2)
Consider the isotropic linear elasticity elastostatics equations for the displacement field u a
vector field (a vector field):

Lu := µ△Xu+ (λ+ µ)∇X(∇X · u) = f := −ρ0bm.

Consider the Fourier modes ϕn for n ∈ Z3.

a. Show for any q ∈ R3 that
−L(qϕn) = Λnqϕn

for some Λn ∈ R3×3. Find Λn and verify if n ̸= 0 that Λn is positive definite, i.e. if q ∈ R3 is
non-zero, q · (Λnq) > 0.

b. Show that if f ∈ Ck
per([−1/2, 1/2]3) that for some C > 0 we have

|f̂(n)| ≤ C
1

|n|k
, n ̸= 0.

where f̂(n) = ⟨f, ϕn⟩, n ∈ Z3.

c. If f ∈ C∞
per([−1/2, 1/2]3;R3), find the classical solution to

Lu = f

when f̂(0) = 0. Prove the solution is classical.



16. (Category: 2)
Consider the heat equation ∂

∂t
u(x, t) = △u(x, t), and suppose u(x, 0) = u0(x) where u0 ∈

S(Rd). Here u(x, t) is a scalar field.

a. Find the classical solution u(x, t) and verify that it is a classical solution, i.e. that
u is twice continuously differentiable in x and continuously differentiable in t, satisfies the
PDE and initial data.

b. Now suppose u0 ∈ L2(Rd). Use the same formulation for your solution as in part (a)
and show that u(x, t) satisfies classically the PDE ∂

∂t
u(x, t) = △u(x, t) for t > 0.

17. (Category: 2)
Consider the inhomogeneous Helmholtz equation

(1−△)u(x) = f(x) (6)

for x ∈ Rd.

a. Suppose f ∈ S(Rd). Find u(x) that solves the PDE such that u(x) → 0 as |x| → ∞.

b. Suppose fn ∈ S(Rd) and fn → f in the L2(Rd) norm sense (i.e. ∥fn − f∥2 → 0).
Suppose un is a solution to

(1−△)un(x) = fn(x).

Show un → u in the L2 sense, and show u satisfies

⟨(1−△)ψ, u⟩ = ⟨ψ, f⟩

for all ψ ∈ S(Rd).

18. (Category: 2)
Suppose g ∈ C(R) real-valued and bounded. Define the operator g(−△) acting on ψ ∈ S(Rd)
by

g(−△)ψ(x) =

ˆ
Rd

e2πix·ξg(4π|ξ|2)ψ̂(ξ)dξ.

a. Suppose f ∈ C(R) real-valued and bounded. Show f(−△)g(−△)ψ = (fg)(−△)ψ.

b. Show f(−△) + cg(−△) = (f + cg)(−△) for c a constant.



c. Show if p(x) =
∑n

j=0 ajx
j is a polynomial that

p(−△)ψ(x) =
n∑

j=0

aj(−△)jψ(x)

where the left-hand side is defined as above and (−△)j is simply the laplacian applied j
times.

19. (Category: 2)
Consider σ : Rd × Rd → R smooth. Suppose we define an operator Q acting on S(Rd) by

Qψ(x) =

ˆ
Rd×Rd

σ(x, ξ)ψ(y)e2πi(x−y)·ξdydξ. (7)

a. Show that if σ(x, ξ) = q(x) + ξTAξ for A a d× d positive definite matrix that Q can
be written as a linear differential operator. Find that linear differential operator.

b. Suppose Qψ(x) = g(x) · ∇ψ(x) for some vector-valued continuous and bounded
function g(x). Find σ(x, ξ) that satisfies (7).

20. (Category: 2)
Consider the PDE u : D = [0,∞)× [0, 1]2 × [0,∞) → R:

∇ · A∇u− γu =
∂2

∂t2
u,

u(x, y, z, t) = 0 for (y, z) ∈ ∂([0, 1]2) and all t ≥ 0,

u(0, y, z, t) = f(0, y, z) for all t ≥ 0,

u(x, y, z, 0) = f(x, y, z).

Here A is a self-adjoint positive-definite 3× 3 matrix, γ > 0, and f ∈ S([0,∞)× [0, 1]2) with
f(x, y, z) = 0 for (y, z) ∈ ∂([0, 1]2). Derive a formula for u(x, y, z, t) using Fourier analysis.

21. (Category: 3)
Let Γ be a smooth surface in R3, such that Γ divides R3 into two disjoint open regions, Ω1

and Ω2, with R3 = Ω1 ∪ Ω2 ∪ Γ. Let n be the normal vector at each point of Γ, directed



into Ω2. Let F be a smooth vector field in Ω1 ∪Ω2 that is smoothly extensible from Ω1 to a
vector field F1 in Ω1 ∪ Γ and from Ω2 to a vector field F2 in Ω2 ∪ Γ; and denote the jump in
F across Γ at each x ∈ Γ by

[F ](x) = F2(x)− F1(x).

For any function g integrable on Γ, denote by gδΓ the distribution defined by

⟨gδΓ, ϕ⟩ =

ˆ
Γ

gϕ ∀ϕ ∈ C∞
c .

Consider F to be a distribution, and denote its divergence as a distribution by ∇·F . Prove
that

∇·F = ∇·F1|Ω1 +∇·F2|Ω2 + [F ]·n δΓ.

22. (Category: 3)
Find the distributional derivative of ln |x| in D′(R).

23. (Category: 3)
Prove that the Dirac delta-function is not equal as a distribution to any continuous function.

24. (Category: 3)
This problem shows that multiplication of distributions is not a continuous operation (typi-
cally multiplication of distributions is not defined anyway). Prove that

lim
n→∞

sin(nx) = 0

in D′(R), but that
lim
n→∞

sin2(nx) ̸= 0

25. (Category: 3)
Suppose Ω ⊂ R3 is a bounded open set with Lipschitz continuous boundary. Consider the
operator L : C∞

c (Ω;C3) → C∞
c (Ω;C3) defined by

Lψ = µ△ψ + (λ+ µ)∇(∇ · ψ).



Prove Lu = f has a weak solution, i.e. a distributional solution u ∈ L1
loc(Ω;C3), for f ∈

L2(Ω;C3) with respect to the test function space C∞
c (Ω;C3). Show u ∈ L2(Ω).

26. (Category: 3)
Let Ω ⊂ R3 be bounded and open and 0 < τ1 < τ(x) < τ2. Consider the PDE in the weak
sense, ∇ · A(x)∇u(x) + λτ(x)u(x) = f(x) for f ∈ L2(Ω) where A(x) ∈ R3×3 is self-adjoint,
positive definite, and bounded.
Show there exists a weak solution for all λ except possibly a countable set in H1

0 (Ω), which
is the closure of C∞

c (Ω), with respect to the norm

∥ψ∥21 :=
ˆ
Ω

∇ψ(x) · A(x)∇ψ(x)dx.

27. (Category: 3)
Consider the weak formulation of the PDE

∇ · τ(x)∇u = f,

when the material coefficient τ(x) takes on different constant values on two different com-
ponents of an object.
Let Ω be a bounded open set in Rd with smooth boundary ∂Ω and closure Ω. Let Γ be
a smooth hypersurface in Rd that divides Rd into two disjoint open “halves", W− and W+,
and let n denote the normal vector to Γ that points into W+ or the normal vector to ∂Ω
that points out of Ω. Denote the intersections of these halves with Ω by Ω− = W− ∩ Ω and
Ω+ = W+ ∩ Ω. Let τ(x) be piecewise constant:

τ(x) =

{
τ− for x ∈ W−
τ+ for x ∈ W+

and assume that f is continuous in Ω− and in Ω+.
Let u : Ω → C be a continuous function that is twice differentiable in each of Ω− and Ω+.
Let u be equal to zero on the boundary ∂Ω. Prove thatˆ

Ω

τ(x)∇u · ∇ϕ =

ˆ
Ω

fϕ ∀ϕ ∈ C∞
c (Ω)

if and only if ∀x ∈ Ω,

τ−∇2u(x) = −f(x) if x ∈ Ω−

τ+∇2u(x) = −f(x) if x ∈ Ω+

τ−∇u−(x) · n = τ+∇u+(x) · n if x ∈ Γ



in which ∇u±(x) indicates the limit of ∇u(x) to Γ from inside Ω±.

28. (Category: 1)
Consider a body in material coordinates B ⊂ R3 open. Let x = φ(X, t) = φt(X) be our
change from material to spatial coordinates, and let ρ(x, t) define the density field in spatial
coordinates. Assume conservation of mass holds. Prove that if Φ(x, t) is smooth and scalar-
valued and Ωt = φt(Ω) is the time evolution of some open Ω ⊂ B that

d

dt

ˆ
Ωt

Φ(x, t)ρ(x, t)dVx =

ˆ
Ωt

d

dt
Φ(x, t) ρ(x, t)dVx.

Here we denote d
dt
Φ(x, t) := ∂

∂t
Φ(φ(X, t), t)

∣∣∣∣
X=φ−1

t (x)

.

29. (Category: 1)
Suppose we had a system with a fixed uniform rate of mass decay described as follows. Let
x = φ(X, t) = φt(X) be the map from material coordinates to spatial coordinates, and let
ρ(x, t) be the spatial mass density field and let v(x, t) = ∂

∂t
φ(X, t). Assume all fields are

smooth. Suppose for Ω ⊂ B open where B is the body and Ωt = φt(Ω) that we have the
mass function

mass[Ωt] =

ˆ
Ωt

ρ(x, t)dVx.

Suppose
d

dt
mass[Ωt] = −

ˆ
Ωt

γ(x, t)ρ(x, t)dVx (8)

for some smooth function γ(x, t) > 0. From the mass relation in (8), derive the PDE in
spatial coordinates

∂

∂t
ρ(x, t) +∇x · (ρ(x, t)v(x, t)) = −γρ(x, t), x ∈ Bt, t ≥ 0. (9)

30. (Category: 1)
Consider a body B and the relation x = φ(X, t) = φt(X) relating spatial and material
coordinates. Let S(x, t) be a Cauchy stress tensor satisfying balance of angular momentum,



v(x, t) the velocity spatial field, and ρ(x, t) the mass density spatial field, and ρ(x, t)b(x, t)
the body force field. Assume all fields smooth.
Prove that for any Ωt ⊂ B open with smooth boundary, thenˆ

Ωt

ρv · d
dt
v dVx +

1

2

ˆ
Ωt

S : (∇xv +∇xvT ) dVx =

ˆ
∂Ωt

v · Sn dAx +

ˆ
Ωt

ρb · v dVx.

Here d
dt

acting on a spatial field is understood as the partial derivative in time when the field
is written in material coordinates.

31. (Category: 3)
Define the Fourier transforms on ψ ∈ S(Rd) by Fψ(ξ) =

´
e−2πix·ξψ(x)dx.

a. Consider the delta tempered distribution δ ∈ S ′(Rd). Find Fδ.

b. Find F(Fδ).

32. (Category: 2) Define H1
0 (Rd) as the completion of C∞

0 ([0, 1]d) functions with respect
to the norm

∥u∥H1 =

√ˆ
[0,1]d

|∇u(x)|2dx.

Prove

φn(x) = 2d/2
d∏

j=1

sin(πnjxj), n ∈ Nd

forms a complete orthonormal basis of H1
0 (Rd). You may assume ϕn(x) = ei2πn·x for n ∈ Zd

is a complete basis.

33. (Category: 2) Consider the Fourier transform F : S(Rd) → S(Rd) defined by Fψ(ξ) =´
Rd e

−2πix·ξψ(x)dx. Prove if ϕ(x) = e−πx2 that Fϕ(ξ) = ϕ(ξ).

34. (Category: 2) Consider the PDE −∇·A∇u(x)+u(x)=f(x) for f ∈ C∞
per([0, 1]

3) where
A = A∗ is a constant 3×3 matrix. Suppose A has eigenpairs (vi, λi)

3
i=1 with eigenvalues

λi > 0 for all i. Find the solution u ∈ C∞
per([0, 1]

3). Prove the smoothness of u.



35. (Category: 3)
Define the spaceH1 to be the closure of smooth functions u on [0, 1] such that u(0) = u(1) = 0
with respect to the norm ∥f∥H1 = ∥ d

dx
f∥2 where ∥ · ∥2 denotes the standard L2([0, 1]) norm.

Consider the inclusion operator ι : H1 → L2([0, 1]) defined by ιf = f . Show ι is a compact
operator, i.e. there is a sequence of finite rank operators ιn such that ιn → ι in operator
norm. (This is a 1D Rellich-Kondrachov Theorem).

36. (Category: 3)
Consider the static Schrödinger operator L = −△+V (x) for V smooth, real, and periodic on
[0, 1]d. Show there are eigenpairs {(vj, λj)}∞j=1 where λj are increasing, λj → ∞ as j → ∞,
vj ∈ H1 are orthonormal, and L =

∑∞
j=1 λjvj ⊗ vj.

37. (Category: 3)
Let u ∈ D′(R) and let Dh : D′(R) → D′(R) be defined by ⟨Dhu, ϕ⟩ = ⟨u,−Dhϕ⟩ where
Dhϕ(x) =

ϕ(x+h)−ϕ(x)
h

. Show Dhu→ d
dx
u ∈ D′(R) in the sense of distributions.


