Print Your Name Here:

- Grading is based mainly on the detailed work, which you must show in the space provided - not just the answers. We can give credit only for what you write! Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading.
- Books, notes (electronic or paper), communication devices (eg laptops, tablets, cell/smart phones, I-watches) are prohibited! A scientific calculator (not capable of graphing or symbolic calculations) is allowed but not needed. If you use a calculator, you must still write out all operations performed on the calculator. Do not replace precise answers, such as $\sqrt{2}, \pi$, or $\sin \frac{\pi}{7}$ with decimal approximations. Keep your eyes on your own paper!
- There are ten (10) problems of equal weight and the Maximum total score $=200$.

1. Use integration by parts to find $\int x \sin \pi x d x$.
2. Use a trigonometric substitution to find $\int_{0}^{2} x^{2} \sqrt{4-x^{2}} d x$.
3. Evaluate the improper integral $\int_{0}^{\infty} \frac{x}{x^{4}+1} d x$.
4. At what point(s) on the parametric curve $x=3 t^{2}+2, y=t^{3}-3$ does the tangent line have slope $\frac{d y}{d x}=\frac{1}{2}$?
5. Find the area enclosed by the cardioid, given in polar coordinates by $r=1+\sin \theta, 0 \leq \theta \leq 2 \pi$.
6. Use the ratio test to find the radius R of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$. Also find the interval of convergence, being sure to test the two endpoints.
7. Use the Taylor coefficient formula to find the Maclaurin series (i.e. power series in powers of x) for $f(x)=\sin x$. (Suggestion: find $a_{0}, a_{1}, a_{2}, a_{3}$, notice the pattern, and express $f(x)$ as the sum of an infinite series of coefficients times powers of x.)
8. Let θ be the angle between the vectors $\mathbf{a}=\langle 3,2,1\rangle$ and $\mathbf{b}=\langle 2,3,1\rangle$. Find:
a. $\mathbf{a} \cdot \mathrm{b}$
b. $\cos \theta$
c. $\mathbf{a} \times \mathrm{b}$
d. the area of the parallelogram with adjacent edges \mathbf{a} and \mathbf{b}.
9. Consider two points $P(1,2,3)$ and $Q(3,1,2)$.
a. Find a vector equation for the straight line through P and Q.
b. Find an equation for the plane through the point P and perpendicular to the vector $\overrightarrow{P Q}$.
10. The position vector of a particle at time t is $\mathbf{r}(t)=\langle t, \cos t, \sin t\rangle$. Find:
a. The velocity vector $\mathbf{r}^{\prime}(t)$.
b. The arc length traveled by $\mathbf{r}(t)$ for $0 \leq t \leq 2 \pi$.
c. The unit tangent $\mathbf{T}=\frac{d \mathbf{r}}{d s}$.
d. $\frac{d \mathbf{T}}{d s}$, and the curvature κ at time t.

Solutions

1. $\int x \sin \pi x d x=\frac{\sin \pi x}{\pi^{2}}-\frac{x \cos \pi x}{\pi}+C$. Remember that $u d v$ needs to be the whole integrand when using parts.
2. Letting $x=2 \sin \theta$ we find that $\int_{0}^{2} x^{2} \sqrt{4-x^{2}} d x=\pi$. It helps to know $\sin 2 \theta$ and $\cos 2 \theta$.
3. Substituting $u=x^{2}$ we obtain an integrand recognized as the derivative of the inverse tangent. Thus $\int_{0}^{\infty} \frac{x}{x^{4}+1} d x=\frac{1}{2} \int_{0}^{\infty} \frac{1}{u^{2}+1} d u=\frac{1}{2}\left(\lim _{b \rightarrow \infty} \tan ^{-1} b-\tan ^{-1} 0\right)=\frac{\pi}{4}$. It is also possible to solve this problem with a trigonometric substitution $x^{2}=\tan \theta$.
4. Since $\frac{d y}{d x}=\frac{t}{2}=\frac{1}{2}$ we find that $t=1$ and the corresponding point on the curve is $(5,-2)$.
5. $A=\frac{1}{2} \int_{0}^{2 \pi} r(\theta)^{2} d \theta=\frac{3}{2} \pi$. As we saw very often in class going over the homework problems, one really needs to know $\cos 2 \theta$ to evaluate the integral of $\sin ^{2} \theta$.
6. $R=1$ by the ratio test, which one must know how to use, and the interval of convergence is $(-1,1]$, where we have convergence when $x=1$ by the alternating series test, and divergence when $x=-1$ since this results in minus the harmonic series, which diverges.
7. $a_{0}=0, a_{1}=1, a_{2}=0, a_{3}=\frac{1}{3!}$, and $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ or an equivalent expression.
8.

a. $\mathbf{a} \cdot \mathbf{b}=13$
b. $\cos \theta=\frac{13}{14}$
c. $\mathbf{a} \times \mathbf{b}=\langle-1,-1,5\rangle$
d. the area of the parallelogram with adjacent edges \mathbf{a} and \mathbf{b} is $|\mathbf{a} \times \mathbf{b}|=|\langle-1,-1,5\rangle|=3 \sqrt{3}$.
9.
a. $\mathbf{r}(t)=\langle 1+2 t, 2-t, 3-t\rangle$ or an equivalent vector equation.
b. $2 x-y-z+3=0$ or an equivalent linear equation in 3 variables using the normal vector $\overrightarrow{P Q}=\langle 2,-1,-1\rangle$.
10.
a. $\mathbf{r}^{\prime}(t)=\langle 1,-\sin t, \cos t\rangle$.
b. $\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t=2 \pi \sqrt{2}$ since $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{2}$.
c. $\mathbf{T}=\frac{d \mathbf{r}}{d s}=\frac{1}{\sqrt{2}}\langle 1,-\sin t, \cos t\rangle$.
d. $\frac{d \mathbf{T}}{d s}=\frac{1}{2}\langle 0,-\cos t,-\sin t\rangle$, and the curvature $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{2}$.

Class Statistics

\% Grade	Test\#1	Test\#2	Test\#3	Test \#4	Final Exam	Final Grade
$90-100(\mathrm{~A})$	8	10	5	16	4	4
$80-89(\mathrm{~B})$	7	4	2	7	7	12
$70-79(\mathrm{C})$	8	9	9	5	11	11
$60-69(\mathrm{D})$	4	3	11	2	8	5
$0-59(\mathrm{~F})$	9	10	8	3	4	4
Test Avg	73.5%	71.4%	70.3%	84.1%	74.45%	74.31%

