LSU Math REU

Bibliography for LSU REU 2001

Report on 1966 REU

  • Shelly Harvey and Andrea Ritter, A Research Experience for Undergraduates, Notices of the American Mathematical Society, Feb. 1998, p. 267-268.

    Zeta Functions on Graphs

  • H. Bass, The Ihara-Selberg zeta function of a tree lattice , Internat. J. Math 3 (1992), 717-797.
  • F. R. K. Chung, Spectral Graph Theory , CBMS Regional Conference Series in Mathematics 92 , 1997.
  • F. R. K. Chung and R. P. Langlands, A combinatorial Laplacian with vertex weights , J. Comb. Theory Ser. A 75 (1996), 316-327.
  • W.-C. W. Li, Number Theory, with applications , World Scientific Series on University Mathematics, vol. 7, 1996.
  • B. W. Jordan and R. Livne, Ramanujan local systems on graphs , Topology 36 (1997), 1007-1024.
  • A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs , Combinatorica, 8 (1988), 261-277.
  • Conner, P., and Perlis, R., Survey of Trace Forms, Series in Pure Math, vol. 2, World Scientific, Singapore, (1984).
  • Perlis, R, On the equation $\zeta_K(s) = \zeta_L(s)$, Journal of Number Theory 9 , 342-360 (1977).
  • Perlis, R., A remark about zeta functions of number fields of prime degree, Journal f. d. reine u. angewandte Mathematik 293/294 , 435-436 (1977).
  • Perlis, R., On the class numbers of arithmetically equivalent fields, Journal of Number Theory 10 , 489-509 (1978).
  • Perlis, R. and Schinzel, A., Zeta functions and the equivalence of integral forms, Journal f. d. reine u. angewandte Mathematik 309 , 176-182 (1979)
  • Sunada, T., Riemannian coverings and isospectral manifolds, Ann. Math. 121 (1985) 169-186.

    Counting Functions and Braids

  • Artin, Emil, Theory of Braids . Ann. Math. 48 (1947), pp. 101-126.
  • Dehornoy, P. Braids and Self-Distributivity , Birkhauser, 2000.
  • D. B. A. Epstein et. al. Word Processing in Groups . Jones and Bartlett Publishers, Boston, 1992, 330 p.
  • Fox, Ralph H., Free Differential Calculus I . Ann. Math. 57 (1953), pp. 547-560.
  • Schneps, Leila The Grothendieck Theory of Dessins d'Enfants . LMS Lecture Notes Series, 200, Cambridge, 1994, 368 p.
  • C. Adams, Knot Theory , Freeman, 1994.
  • D. J. A. Walsh, Knots and their Complexity , Cambridge, 1990.
  • L. Kauffman, On Knots , Princeton, 1990.
  • R. C. Penner and J. L. Harer,Combinatorics of train tracks , Annals of Mathematics Studies, 125
    REU Page
    Last Update: 23 January, 2004