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Abstract. Let G be a graph such that, whenever two vertices x and y
of G are joined by three internally disjoint paths, x and y are adjacent.
Jamison and Mulder determined that the set of such graphs coincides
with the set of graphs that can be built from cycles and complete graphs
via 1-sums and parallel connections. This paper proves an analogous
result for binary matroids.

1. Introduction

Jamison and Mulder [3] defined a graph G to be Θ3-closed if, whenever
distinct vertices x and y of G are joined by three internally disjoint paths,
x and y are adjacent. For disjoint graphs G1 and G2, a 1-sum of G1 and
G2 is a graph that is obtained by identifying a vertex of G1 with a vertex
of G2. Following Jamison and Mulder, we define a 2-sum of G1 and G2 to
be a graph that is obtained by identifying an edge of G1 with an edge of
G2. Note that, in contrast to some other definitions of this operation, we
retain the identified edge as an edge of the resulting graph. The main result
of Jamison and Mulder’s paper is the following.

Theorem 1.1. A connected graph G is Θ3-closed if and only if G can be
built via 1-sums and 2-sums from cycles and complete graphs.

This paper generalizes Theorem 1.1 to binary matroids; all matroids con-
sidered here are binary unless stated otherwise. The terminology and no-
tation follow [5] with the following additions. We will use Pr to denote the
rank-r binary projective geometry, PG(r − 1, 2). A theta-graph is a graph
that consists of two distinct vertices and three internally disjoint paths be-
tween them. A theta-graph in a matroid M is a restriction of M that is
isomorphic to the cycle matroid of a theta-graph. Equivalently, it is a re-
striction of M that is isomorphic to a matroid that is obtained from U1,3 by
a sequence of series extensions. The series classes of a theta-graph are its
arcs. Let T be a theta-graph of M with arcs A1, A2, and A3. If M has an
element e such that, for every i, either Ai ∪ e is a circuit of M , or Ai = {e},
then e completes T in M , and T is said to be complete. A matroid M is
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matroid Θ3-closed if every theta-graph of M is complete. The next theorem
is the main result of this paper.

Theorem 1.2. A matroid M is matroid Θ3-closed if and only if M can be
built via direct sums and parallel connections from circuits, cycle matroids
of complete graphs, and projective geometries.

Suppose M is isomorphic to the cycle matroid of a graph G. Two vertices
in G that are joined by three internally disjoint paths are adjacent via an
edge e exactly when the corresponding theta-graph of M is completed by e.
In other words, G is Θ3-closed if and only if M is matroid Θ3-closed. This
allows us to refer to M as Θ3-closed without ambiguity. We will denote the
class of Θ3-closed matroids by Θ3.

Section 2 introduces supporting results. The 3-connected matroids that
are Θ3-closed are characterized in Section 3, and the proof of Theorem 1.2
appears in Section 4.

2. Preliminaries

Our first proposition collects some essential properties of Θ3-closed ma-
troids. These properties will be used frequently and often implicitly.

Proposition 2.1. If M ∈ Θ3, then

(i) si(M) ∈ Θ3;
(ii) M |F ∈ Θ3 for every flat F of M ; and
(iii) M/e ∈ Θ3 for every e ∈ E(M).

Proof. Parts (i) and (ii) are straightforward. For part (iii), let T be a
theta-graph of M/e. Then [(M/e)|T ]∗ is obtained from U2,3 by adding
elements in parallel to the existing elements. Since M is binary, it fol-
lows that M∗/(E(M)− (T ∪ e)) is obtained from [(M/e)|T ]∗, that is, from
M∗/(E(M)− (T ∪ e))\e, by adding e as a coloop or by adding e in parallel
to one of the existing elements. Thus, e is either a loop in M |(T ∪e), or is in
series with another element. Hence, since T is complete in M , it is complete
in M/e. �

Evidently, a matroid is in Θ3 if and only if its connected components are
in Θ3. This will also be used implicitly throughout the paper. The following
is an immediate consequence of Proposition 2.1.

Corollary 2.2. If M ∈ Θ3 and N is a parallel minor of M , then N ∈ Θ3.

From, for example, [5, Exercise 8.3.3], if M = M1⊕2M2, then M1 and M2

are parallel minors of M . The next result now follows from Corollary 2.2.

Corollary 2.3. If M ⊕2 N is in Θ3, then M and N are in Θ3.

To see that the converse of the last corollary fails, observe that M(K2,4)
is not in Θ3 although it is the 2-sum of two copies of a matroid in Θ3.
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We conclude this section with a result about constructing larger matroids
in Θ3 from smaller ones. Recall that, for sets X and Y in a matroid M ,
the local connectivity between X and Y , denoted u(X,Y ), is defined by
u(X,Y ) = r(X) + r(Y )− r(X ∪ Y ). We will use the following result about
local connectivity from, for example, [5, Lemma 8.2.3].

Lemma 2.4. Let X1, X2, Y1, and Y2 be subsets of the ground set of a
matroid M . If X1 ⊇ Y1 and X2 ⊇ Y2, then u(X1, X2) ≥ u(Y1, Y2).

Proposition 2.5. For matroids M and N , the parallel connection P (M,N)
is in Θ3 if and only if M ∈ Θ3 and N ∈ Θ3.

Proof. Let p be the basepoint of the parallel connection. When p is a loop or
a coloop ofM , the matroid P (M,N) isM⊕(N/p) or (M/p)⊕N , respectively.
In these cases, it follows using Proposition 2.1 that the result holds. Thus
we may assume that p is neither a loop nor a coloop of M or N . Suppose
P (M,N) ∈ Θ3. Let BM be a basis for M containing p. Extend BM to
a basis B for P (M,N). After contracting both the elements of B − BM

in P (M,N) as well as all of the resulting loops, the remaining elements of
E(N)−p are parallel to p. We deduce that M , and similarly N , is a parallel
minor of P (M,N). Hence, by Corollary 2.2, M and N are in Θ3.

Conversely, suppose that M,N ∈ Θ3 and let T be a theta-graph of
P (M,N) with arcs A1, A2, and A3. Then we may assume that |Ai| ≥ 2
for each i, otherwise T is complete. Suppose p ∈ A1. Then A1 ∪ A2 is a
circuit containing p, so it is contained in E(M) or E(N) depending on which
of these sets contains A1 − p. It follows that the same set contains A2 and,
likewise A3, so T is complete. Hence we may assume that p /∈ T .

Suppose that each of the arcs of T meets both E(M\p) and E(N\p).
Let TM = E(T ) ∩ E(M), and similarly for TN . Note that TM and TN are
independent, and TM ∪ TN = E(T ), so

u(TM , TN ) = r(TM ) + r(TN )− r(TM ∪ TN )

= |TM |+ |TN | − (|TM |+ |TN | − 2)

= 2.

However, u(E(M), E(N)) = 1, contradicting Lemma 2.4.
Next, suppose that each of A1 and A2 meets both E(M\p) and E(N\p).

Then, from above, we may assume that A3 ⊆ E(M\p). The circuits A1∪A3

and A2 ∪ A3 have the form (C1 − p) ∪ (D1 − p) and (C2 − p) ∪ (D2 − p),
respectively, for circuits C1 and C2 of M containing p, and circuits D1 and
D2 of N containing p. Because A3 ⊆ E(M) and A1∩A2 = ∅, it follows that
D1−p and D2−p are disjoint. However, since M is binary, D14D2 contains
a circuit of P (M,N) that is properly contained in the circuit A1 ∪ A2, a
contradiction.

Now, suppose that A1 meets both E(M\p) and E(N\p). Then, from
above, each of the remaining arcs of T lies in E(M\p) or E(N\p). We
may assume that A2 ⊆ E(M\p). Suppose A3 ⊆ E(N\p). Then the circuits
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A1∪A2 and A3∪A2 have the form (C1−p)∪(D1−p) and (C3−p)∪(D3−p),
respectively, for circuits C1 and C3 of M containing p, and circuits D1 and
D3 of N containing p. Now, since A2 ⊆ E(M\p) and A1 meets E(M\p),
the set C1− p properly contains A2. Further, as A3 does not meet E(M\p),
we have that A2 = C3 − p. This means A2 ∪ p is the circuit C3, but A2 ∪ p
is properly contained in C1, a contradiction.

We conclude that A3 ⊆ E(M\p). Form T ′ from T by replacing the portion
of A1 in E(N\p) by p. Observe that T ′ is isomorphic to a series minor of T ,
so T ′ is a theta-graph. Moreover, T ′ is a theta-graph of M , so it is completed
in M by an element f . Now, since T and T ′ share an arc, f also completes
T in P (M,N).

We are left to consider the case when each arc of T is contained in either
E(M) or E(N). If all three arcs belong to E(M), say, then T is complete
in M , and so is complete in P (M,N). Otherwise, p completes T . �

3. The 3-Connected Θ3-closed Matroids

The proof of Theorem 1.2 will use the canonical tree decomposition of
Cunningham and Edmonds [2] and, in support of that approach, this section
proves the following 3-connected form of Theorem 1.2.

Theorem 3.1. Let M be a simple 3-connected Θ3-closed matroid. Then M
is a projective geometry or the cycle matroid of a complete graph.

The proof of this theorem relies on the next two propositions.

Proposition 3.2. If M is a simple matroid in Θ3 and M has a spanning
M(Kr+1)-restriction, then M ∼= M(Kr+1) or M ∼= Pr.

Proof. Take a standard binary representation for Pr, and view M as the
restriction of Pr to the set X of vectors. Recall that the number of nonzero
entries of a vector is its weight, and that the distance between two vectors
is the number of coordinates upon which they disagree. Because M has an
M(Kr+1)-restriction, we may assume that X contains the set Z of vectors
of weight one or two. We may assume that Z 6= X. Then M has an element
e of weight at least three. We shall establish that M ∼= Pr by proving the
following three assertions.

(i) M has an element of weight three;
(ii) if the matroid M has every element of weight k − 1 and an element

of weight k, for some k exceeding two, then M has every element of
weight k; and

(iii) if M has every element of weight k, where 3 ≤ k < r, then M has
an element of weight k + 1.

Let ei denote the weight-1 element whose nonzero entry is in the ith
position. To show (i), we may assume e has weight k ≥ 4. Say e = e1 +
e2 + · · ·+ ek. Let Y = {e, e1, e2, e4, e5, . . . , ek, e1 + e3, e2 + e3}. Then M |Y is
a theta-graph having arcs {e, e4, e5, . . . , ek}, {e1, e2 + e3}, and {e2, e1 + e3}.
This theta-graph forces e1 + e2 + e3 to be an element of M , so (i) holds.



THE BINARY Θ3-CLOSED MATROIDS 5

To prove (ii), we may assume k < r. Suppose g is an element of weight k
not in M , and let f be an element of weight k in M with minimum distance
from g. Let s label a row where f is 1 and g is 0, and let t label a row where
g is 1 and f is 0. Next, as k ≥ 3, there are two additional rows, u and v,
distinct from s where f is 1. Now, the set {f, eu, ev, es + et} is independent,
so the arcs {f, es + et}, {eu, f + eu + es + et}, and {ev, f + ev + es + et} form
a theta-graph in M . This theta-graph implies that f + es + et belongs to
M . However, f + es + et has weight k and is a smaller distance from g than
f , a contradiction. Thus (ii) holds.

Finally, let f be an element of weight k + 1 for some k with 3 ≤ k < r.
By symmetry, we may assume that the set of rows in which f is nonzero
contains {1, 2, 3}. Then {f, e1, e2, e3} is independent in M , and the sets
{e1, f + e1}, {e2, f + e2}, and {e3, f + e3} are the arcs of a theta-graph in
M . This theta-graph shows that f belongs to M . Thus (iii) holds. Hence
the proposition holds as well. �

The second proposition that we use to prove Theorem 3.1 will follow from
the following three results.

Lemma 3.3. Let M be a simple rank-r matroid in Θ3. Suppose that

(i) r ≥ 4;
(ii) E(M) has a subset P such that M |P ∼= Pr−1; and
(iii) E(M)− P contains at least three elements.

Then M ∼= Pr.

Proof. View M as a restriction of Pr, and let {e, f, g} be a subset of E(M)−
P . Let p be a point in E(Pr)− P that is not in {e, f, g}. Observe that, for
each x in {e, f, g}, the third point on the line in Pr containing {x, p} is in P .
Thus there are three lines of M that meet at p. Provided p is not coplanar
with {e, f, g}, these lines define a theta-graph in M that is completed by p,
so p is in M . It remains to show that the point q of E(Pr)− (P ∪ {e, f, g})
that is coplanar with {e, f, g} belongs to M . But one easily checks that Pr\q
is not in Θ3 when r ≥ 4. Thus M ∼= Pr. �

Corollary 3.4. Let M be a simple rank-r matroid in Θ3 with r ≥ 3. If M
has a basis B and an element b in B so that, for each {x, y} ⊆ B − b, the
set {b, x, y} spans an F7-restriction of M , then M ∼= Pr.

Proof. Let B = {b1, b2, . . . , br} with b = b1. If r = 3, then the result is
immediate, so suppose r ≥ 4. By induction, M | cl(B − br) is isomorphic to
Pr−1. Since M | cl({b1, b2, br}) ∼= F7, we see that this restriction contains an
independent set of three elements that avoids cl(B − br). Lemma 3.3 now
implies that M ∼= Pr. �

The next result was proved by McNulty and Wu [4, Lemma 2.10].

Lemma 3.5. Let M be a 3-connected binary matroid with at least four
elements. Then, for any two distinct elements e and f of M , there is a
connected hyperplane containing e and avoiding f .
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For a simple binary matroid M , we now define the smallest Θ3-closed
matroid whose ground set contains E(M). Let M0 = M and r(M) = r.
Suppose M0,M1, . . . ,Mk have been defined. The simple binary matroid
Mk+1 is obtained from Mk by ensuring that, whenever T is an incomplete
theta-graph of Mk, the element x that completes T is in E(Mk+1). Since
each Mi is a restriction of Pr, there is a j for which Mj+1 = Mj . When this
first occurs, we call Mj the Θ3-closure of M . Evidently this is well defined.
By associating M with its ground set, the Θ3-closure is a closure operator
(but not necessarily a matroid closure operator) on the set of subsets of the
ground set of any projective geometry containing M .

Proposition 3.6. Let M be a simple 3-connected matroid in Θ3, and let k
be an integer exceeding two. If M has a simple minor N whose Θ3-closure
is Pk, then M is a projective geometry.

Proof. Take subsets X and Y of E(M) such that M/X\Y = N with X
independent and Y coindependent in M . The matroid M/X is in Θ3 and
has N as a spanning restriction. Therefore M/X has Pk as a restriction, so
Pk is a minor of M . From here, the proof is by induction on the rank, r, of
M .

If r = k, the result is immediate, so assume r > k. By Seymour’s Splitter
Theorem, Pk can be obtained from M by a sequence of single-element con-
tractions and deletions, all while staying 3-connected. Let e be the first ele-
ment that is contracted in this sequence. Note that si(M/e) is a 3-connected
member of Θ3 that has Pk as a minor. By induction, si(M/e) ∼= Pr−1. Fix
an embedding of M in Pr. We may assume that M 6∼= Pr. Then some line `
of Pr through e is not contained in E(M). For each subset Z of E(Pr), let
clP (Z) be its closure in Pr. Since si(M/e) ∼= Pr−1, there is an element s of
E(M) that is in ` − {e}. Let t be the point of Pr in ` − {e} that is not in
E(M).

3.6.1. Let F be a rank-4 flat of M containing `−t. Then M |F is isomorphic
to one of P (F7, U2,3) or F7 ⊕U1,1 where the F7-restriction of M |F contains
s but avoids e.

To see this, first note that, by Proposition 2.1(ii), M |F is in Θ3. Recall
that each line of clP (F ) through e contains another point of F . Then there
are three planes, π1, π2, and π3, of M |F containing `− t. Let P be this set
of planes. Therefore, each plane in P has at least one pair of points that
are not on ` such that these two points are collinear with either s or t. Call
such a pair of points a target pair. The rest of the proof frequently relies of
finding theta-graphs, particularly in rank 4. It maybe helpful to note that
such a theta-graph will be isomorphic to M(K2,3). Geometrically, this is
three non-coplanar lines, each full except for shared point. This common
point completes the theta-graph.

Suppose π1 has a target pair collinear with t. Note that if two distinct
planes in P each have a target pair collinear with t, then these pairs, along
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Figure 1. In the proof of 3.6.1, each of M |π2 and M |π3 has
this form.

s

e

t

Figure 2. The matroid M |(π2 ∪ π3) in the proof of 3.6.1.

with {e, s}, are the arcs of an incomplete theta-graph in M |F , an impossi-
bility. Consequently, neither π2 nor π3 has a target pair collinear with t, so
both have the form in Figure 1. The restriction of M to π2 ∪ π3 is given in
Figure 2.

The plane π1 adds a pair of points collinear with t to M |(π2∪π3), and one
readily checks that the addition of this pair gives a restriction of M |F that
is isomorphic to F7⊕2 U2,3. A theta-graph of M |F now gives that M |F has
a restriction isomorphic to P (F7, U2,3). It follows that M |F ∼= P (F7, U2,3)
otherwise, by Lemma 3.3, M |F ∼= P4 and we obtain the contradiction that
t ∈ F .

We may now suppose that no πi has a target pair collinear with t. It
follows that each target pair in each πi is collinear with s, and that e is the
only element of F outside of the target pairs. Observe that the target pairs
must be coplanar as, otherwise, we can find an incomplete theta-graph in
M |F . Thus M |F ∼= F7 ⊕ U1,1. Noting that e is not in the F7-restriction of
M |F , we conclude that 3.6.1 holds.
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Since M is 3-connected, it follows from 3.6.1 that r ≥ 5. By Lemma 3.5,
there is a connected hyperplane H of M containing s and avoiding e. Let
s = b1 and let {b1, b2, . . . , br−1} be a basis B of M |H. For distinct elements i
and j of {2, 3, . . . , r−1}, let Fi,j denote the rank-4 flat M | cl({e, s, bi, bj}) of
M . By 3.6.1, M |Fi,j is isomorphic to F7⊕U1,1 or P (F7, U2,3). Let X be the
subset of Fi,j such that M |X ∼= F7, and recall that e 6∈ X and s ∈ X. The
hyperplane H either contains X or meets X along one of the lines cl({s, bi})
or cl({s, bj}). We deduce the following.

3.6.2. For each pair {i, j} ⊆ {2, 3, . . . , r− 1}, at least one of s+ bi or s+ bj
is in E(M).

Suppose s + b2 is not in E(M). By 3.6.2, the element s + bi belongs to
E(M) for every i in {3, 4, . . . , r − 1}. Consequently, for each pair {i, j} in
{3, 4, . . . , r−1}, the hyperplane H contains the copy of F7 in M |Fi,j , and this
F7 is spanned by {s, bi, bj}. Corollary 3.4 now implies that M | cl(B − b2) ∼=
Pr−2.

Now, since M |H is connected, H contains an element f that is not in
cl(B − b2) ∪ b2. The line cl({b2, f}) meets the projective geometry cl(B −
b2), so b2 + f is also in M . Now consider Y = cl({e, s, b2, b2 + f}). The
intersection H ∩ Y contains the line {b2, f, b2 + f} and also the element s.
By applying 3.6.1 to M |Y , we see that H ∩Y is an F7-restriction containing
s and b2. Since s+ b2 is not in E(M), we have a contradiction.

We conclude that s+bi is in E(M) for every i in {2, 3, . . . , r−1}. The flat
M |Fi,j now meets H in an F7-restriction for every pair {i, j} ⊆ {2, 3, . . . , r−
1} so, by Corollary 3.4, M |H is a projective geometry. Finally, as M is 3-
connected, there is an independent set of three elements in E(M) avoiding
H. Hence, by Lemma 3.3, M ∼= Pr. �

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Let r be the rank of M . If M is graphic, then Theo-
rem 1.1 gives that M ∼= M(Kr+1), so we may assume that M is not graphic.
Thus M has a minor N isomorphic to F7, F ∗7 , M∗(K3,3), or M∗(K5). By
Proposition 3.6, it now suffices to show that the Θ3-closure, Θ(N), of N is
a projective geometry.

This is immediate when N ∼= F7, so suppose N is isomorphic to F ∗7 ,
labelled as in Figure 3. The theta-graphs of N imply that, in Θ(N), the
plane containing {1, 2, 5, 6} is isomorphic to F7. Proposition 3.6 now implies
that M is isomorphic to Pr.

Next, suppose N ∼= M∗(K3,3). The complement of N in P4 is U2,3⊕U2,3;
let x be an element of this complement. The elementary quotient of N
obtained by extending N by x and then contracting x is shown in Figure 4.
The three pairwise-skew 2-element circuits of this quotient correspond to
three lines in the extension of N by x where the union of these lines has
rank four. Thus N contains a theta-graph that is completed by x. It follows
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Figure 3. The matroid F ∗7 .

Figure 4. A quotient of M∗(K3,3).
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Figure 5. The graph K5.

that x and, symmetrically, every point in the complement ofN in P4, belongs
to Θ(N). Lemma 3.3 now implies that Θ(N) ∼= P4.

Now suppose N ∼= M∗(K5), where K5 is labelled as in Figure 5. Figure 6
gives a corresponding binary representation of N . The dual of a theta-graph
with arcs of size at least two is a triangle with no trivial parallel classes.
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1 2 3 4 5 6 7 8 9 0
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 1 1 0


Figure 6. A binary representation of M∗(K5).

Therefore, we can detect theta-graph restrictions of N by contracting ele-
ments of N∗ to produce such a triangle. For example, N∗/5, 8 is the dual of
a theta-graph in N with arcs {1, 2}, {3, 7}, and {0, 4, 6, 9}. This theta-graph
is completed by the element [1 1 0 0 0 0]T , so this element belongs to Θ(N).
The following is a list of duals of theta-graphs of N and the corresponding
elements of Θ(N) that they produce using this reasoning.

• N∗/5, 8 gives [1 1 0 0 0 0]T ∈ Θ(N).
• N∗/4, 9 gives [1 0 1 0 0 0]T ∈ Θ(N).
• N∗/3, 9 gives [1 0 0 1 0 0]T ∈ Θ(N).
• N∗/2, 8 gives [1 0 0 0 1 0]T ∈ Θ(N).
• N∗/0, 6 gives [0 1 1 0 0 0]T ∈ Θ(N).
• N∗/1, 8 gives [0 1 0 0 1 0]T ∈ Θ(N).
• N∗/0, 3 gives [0 1 0 0 0 1]T ∈ Θ(N).
• N∗/1, 9 gives [0 0 1 1 0 0]T ∈ Θ(N).
• N∗/0, 2 gives [0 0 1 0 0 1]T ∈ Θ(N).
• N∗/6, 7 gives [0 0 0 1 1 0]T ∈ Θ(N).
• N∗/5, 7 gives [0 0 0 1 0 1]T ∈ Θ(N).
• N∗/4, 7 gives [0 0 0 0 1 1]T ∈ Θ(N).

It is now straightforward to find theta-graphs in Θ(N) that are completed
by the elements [1 0 0 0 0 1]T , [0 1 0 1 0 0]T , and [0 0 1 0 1 0]T , so Θ(N)
contains every vector of weight 1 or 2. Thus Θ(N) properly contains M(K7),
so, by Proposition 3.2, Θ(N) ∼= P6. �

4. The Main Result

After a review of canonical tree decompositions, this section proves The-
orem 1.2. For a set {M1,M2, . . . ,Mn} of matroids, a matroid-labelled tree
with vertex set {M1,M2, . . . ,Mn} is a tree T such that

(i) if e is an edge of T with endpoints Mi and Mj , then E(Mi)∩E(Mj) =
{e}, and {e} is not a separator of Mi or Mj ; and

(ii) E(Mi) ∩ E(Mj) is empty if Mi and Mj are non-adjacent.
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The matroids M1,M2, . . . ,Mn are called the vertex labels of T . Now suppose
e is an edge of T with endpoints Mi and Mj . We obtain a new matroid-
labelled tree T/e by contracting e and relabelling the resulting vertex with
Mi ⊕2 Mj . As the matroid operation of 2-sum is associative, T/X is well
defined for all subsets X of E(T ).

Let T be a matroid-labelled tree for which V (T ) = {M1,M2, . . . ,Mn} and
E(T ) = {e1, e2, . . . , en−1}. Then T is a tree decomposition of a connected
matroid M if

(i) E(M) = (E(M1) ∪ E(M2) ∪ · · · ∪ E(Mn))− {e1, e2, . . . , en−1};
(ii) |E(Mi)| ≥ 3 for all i unless |E(M)| < 3, in which case n = 1 and

M = M1; and
(iii) M labels the single vertex of T/E(T ).

In this case, the elements {e1, e2, . . . , en−1} are the edge labels of T . Cun-
ningham and Edmonds [2] (see also [5, Theorem 8.3.10]) proved the next
theorem that says that M has a canonical tree decomposition, unique to
within relabelling of the edges.

Theorem 4.1. Let M be a 2-connected matroid. Then M has a tree decom-
position T in which every vertex label is 3-connected, a circuit, or a cocircuit,
and there are no two adjacent vertices that are both labelled by circuits or
are both labelled by cocircuits. Moreover, T is unique to within relabelling of
its edges.

We now complete the proof of our main result.

Proof of Theorem 1.2. Since circuits, cycle matroids of complete graphs,
and projective geometries are in Θ3, by Proposition 2.5, every matroid that
can be built from such matroids by a sequence of parallel connections is in
Θ3.

To prove the converse, we begin by noting that loops can be added via
direct sums and that parallel elements can be added via parallel connections
of circuits, so we may assume M is simple. Let T be the canonical tree
decomposition of M . The proof is by induction on |V (T )|.

If |V (T )| = 1, then M is 3-connected and the result holds by Theorem 3.1.
Now assume T has at least two vertices, and let N be a matroid labelling
a leaf of T . Since M is simple, N is not a cocircuit. We may now write
M = N ⊕2 M1, where, by Corollary 2.3, N and M1 are in Θ3. Thus, by
Theorem 3.1, N is a circuit, the cycle matroid of a complete graph of rank
at least three, or a projective geometry of rank at least three. Moreover, by
induction, M1 is a parallel connection of circuits, cycle matroids of complete
graphs, and projective geometries.

Let N1 be the label of the neighbor of N in T , and suppose N1 is not a
cocircuit. In this case, each of N and N1 is a circuit, the cycle matroid of
a complete graph of rank at least three, or a projective geometry of rank at
least three, and they are not both circuits. Therefore, if p is the basepoint of
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the 2-sum N ⊕2 N1, there are circuits in N and N1 that form a theta-graph
that is completed by p, a contradiction. Thus N1 is a cocircuit.

Now let k be the degree of N1 in T . Evidently N1 has at least k elements,
but, since M is simple, N1 has at most k + 1 elements. If k = 2, then N1

has three elements as N1 labels a vertex of T . Otherwise k ≥ 3, so there
are circuits in M that form a theta-graph that is completed by an element
of N1. Hence N1 has k+ 1 elements, and therefore corresponds to a parallel
connection of its neighbors. It now follows that M is the parallel connection
of circuits, cycle matroids of complete graphs, and projective geometries. �
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