On the Character of S_n acting on Subspaces of \mathbb{F}_q^n

R. F. Lax

September 4, 2003

A binary code of length n is a subspace of the vector space \mathbb{F}_2^n . Two such codes are equivalent if one can be obtained from the other by permuting coordinates. Thus, one can consider the action of S_n on the set of all subspaces of \mathbb{F}_2^n defined by permuting coordinates, and the equivalence classes of binary codes of length n are exactly the orbits of this action.

More generally, one can consider the action of S_n on all subspaces of \mathbb{F}_q^n , but two *q*-ary codes of length *n* are equivalent if one can be obtained from the other by permuting coordinates and/or multiplying some coordinates by nonzero elements of \mathbb{F}_q . This leads one to consider the action of the wreath product of \mathbb{F}_q^{\times} and S_n on the subspaces of \mathbb{F}_q^n , and the equivalence classes of *q*-ary codes of length *n* are the orbits of this action.

Let $G_{n,q}$ denote the number of subspaces of the vector space \mathbb{F}_q^n . This number was called a Galois number by J. Goldman and G.-C. Rota [4], and they showed that

$$G_{n,q} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q},$$

where $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is the *q*-binomial coefficient.

If $f, g : \mathbb{N} \to \mathbb{R}^+$, then we write $f \sim g$ if $f(n)/g(n) \to 1$ as $n \to \infty$. We write f(n) = O(g(n)) if there exists a constant C and an integer n_0 such that $f(n) \leq Cg(n)$ for all $n \geq n_0$. Let b(n) denote the number of distinct equivalence classes of binary codes of length n. M. Wild [8] claimed that, asymptotically, $b(n) \sim G_{n,2}/n!$. However, there is a mistake in the proof of (24) in [8]. In that argument, if $\sigma \in S_n$ and σ is the product of disjoint cycles C_1, \ldots, C_r , then $\rho(\sigma)$ denotes the number of the cycles C_j that have length equal to a power of 2 (including 2^0). If the length of C_j is l_j and one writes $l_j = 2^{\alpha_j} u_j$, with u_j odd and $\alpha_j \geq 0$, for $j = 1, \ldots, r$, then $\mu_1 = \max\{2^{\alpha_j} | 1 \leq j \leq r\}$. Wild puts $\tau = \sigma^{\mu_1}$ and claims in the proof of (24) that $\rho(\tau) = \rho(\sigma)$. However, this is false. For example, if n is even and σ is a product of n/2 disjoint transpositions, then τ is the identity, so $\rho(\tau) = n$ while $\rho(\sigma) = n/2$. In a private communication, Wild suggested that the definition of ρ could be changed to equal the sum of the lengths of those C_j that have length equal to a power of 2. This would allow the proof of his (24) to go through, but it creates a problem in the proof of his (25). There does not appear to be an easy way to fix this gap in Wild's arguments. Let $\mathcal{G}_{n,q}$ denote the set of all subspaces of the vector space \mathbb{F}_q^n . Then S_n acts on $\mathcal{G}_{n,q}$ by permuting the coordinates of \mathbb{F}_q^n , and we let χ_n denote the character of the associated permutation representation. Thus, if $\sigma \in S_n$, then

$$\chi_n(\sigma) = \#\{W \in \mathcal{G}_{n,q} | \sigma \cdot W = W\}.$$

Our main result is that, for all q, the normalized character $\chi_n/G_{n,q}$ asymptotically approaches the trivial character (which takes the value 1 on the identity and 0 on all other permutations). In order to prove Wild's result, one needs that

$$\sum_{\sigma \neq (1)} \chi_n(\sigma) / G_{n,2} \to 0 \text{ as } n \to \infty,$$

where (1) denotes the identity permutation, so our result when q = 2 is weaker. Our results are not surprising in light of the work of A. M. Vershik and S. V. Kerov [7] and P. Biane [1, 2], who have shown that the normalized characters of irreducible representations of S_n corresponding to "balanced" Young diagrams approach the trivial character asymptotically.

We thank W. A. Adkins and James Oxley for very helpful conversations and suggestions.

1 Preliminaries

Let q be a power of a prime p. We define an action of S_n on \mathbb{F}_q^n as follows. If we think of an element (x_1, x_2, \ldots, x_n) of \mathbb{F}_q^n as being the mapping ϕ : $\{1, 2, \ldots, n\} \to \mathbb{F}_q$ that takes i to x_i , then, given $\sigma \in S_n$, we define $\sigma \phi$ to be the mapping $\phi \circ \sigma^{-1}$. So, if $\sigma \in S_n$, then let

$$T_{\sigma}: \mathbb{F}_q^n \to \mathbb{F}_q^n$$

denote the linear map that sends (x_1, x_2, \ldots, x_n) to

$$(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)})$$

The matrix of T_{σ} relative to the canonical basis of \mathbb{F}_q^n is just the permutation matrix obtained by applying the permutation σ to the rows of the $n \times n$ identity matrix.

We then have an action of S_n on $\mathcal{G}_{n,q}$ given by

This differs from the action defined in [8], but agrees with the action defined in [6]. Let χ_n denote the character of the associated permutation representation of S_n .

Let T be a linear transformation on a finite-dimensional vector space V. The lattice $\mathcal{L}(T)$ of T-invariant subspaces consists of all subspaces W of Vsuch that $T(W) \subseteq W$. Then, with notation as above, we have $\chi_n(\sigma) = #\mathcal{L}(T_{\sigma})$. Let $g_1^{n_1}(X)g_2^{n_2}(X)\cdots g_s^{n_s}(X)$ be the factorization of the minimal polynomial of T into a product of powers of irreducible polynomials over \mathbb{F}_q . Put

$$V_i = \ker g_i(T)^{n_i}$$
 and $T_i = T|_{V_i}$

for i = 1, 2, ..., s. The Primary Decomposition Theorem [5] says that $V = \bigoplus_{i=1}^{s} V_i$, each V_i is invariant under T, and the minimal polynomial of T_i is $g_i^{n_i}(X)$. Also, from [3], we have that

$$\mathcal{L}(T) = \bigoplus_{i=1}^{s} \mathcal{L}(T_i).$$

The dimension of the subspace of vectors left fixed by T_{σ} is well-known. Write σ as the product of disjoint cycles, including cycles of length 1. Let $c(\sigma)$ denote the number of cycles in this decomposition.

Lemma 1.1. The dimension of $\ker(T_{\sigma} - I)$ is $c(\sigma)$.

Proof. Let $\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_q^n$. Write σ as a product of disjoint cycles. Then T_{σ} leaves \vec{x} fixed precisely when, for each cycle (i_1, i_2, \ldots, i_m) in this product, we have $x_{i_1} = x_{i_2} = \cdots = x_{i_m}$. Therefore, σ leaves $q^{c(\sigma)}$ vectors fixed. **Lemma 1.2.** Suppose $\sigma = C_1 C_2 \cdots C_r$ is the product of disjoint cycles of lengths l_1, l_2, \ldots, l_r , respectively. If p_1 is a prime divisor of l_j for some $j = 1, 2, \ldots, r$, then there exists N such that σ^N is a product of disjoint cycles of length p_1 .

Proof. Let N' denote the least common multiple of l_1, l_2, \ldots, l_r . Then N' is the order of σ in the symmetric group. Put $N = N'/p_1$. Then the order of σ^N is p_1 , which implies that σ^N is a product of disjoint cycles of length p_1 .

Lemma 1.3. Let σ be a product of disjoint cycles of lengths m^{r_1}, \ldots, m^{r_s} , where $r_1 \geq r_2 \geq \cdots \geq r_s \geq 0$. Then the minimal polynomial of T_{σ} is $X^{m^{r_1}} - 1$.

Proof. Clearly, $(T_{\sigma})^{m^{r_1}}$ is the identity map. Now let f(X) be a polynomial with leading term $a_d X^d$, where $d < m^{r_1}$. Without loss of generality, we may assume that the decomposition of σ as a product of disjoint cycles contains the cycle $(1, 2, \ldots, m^{r_1})$. Then the image of the *n*-tuple $(1, 0, 0, \ldots, 0)$ under the map $f(T_{\sigma})$ is the *n*-tuple with a_d in the (d+1)st coordinate, hence $f(T_{\sigma})$ is nonzero.

In the special case when σ is the product of disjoint transpositions and $p \neq 2$, we can give the value of $\chi_n(\sigma)$ exactly.

Proposition 1.4. Suppose $p \neq 2$. Let σ be the product of t disjoint transpositions. Then

$$\chi_n(\sigma) = G_{n-t,q} \cdot G_{t,q}.$$

Proof. The minimal polynomial of T_{σ} is (X - 1)(X + 1). The dimension of $V_1 = \ker(T_{\sigma} - I)$ is $c(\sigma) = t + n - 2t = n - t$, and the dimension of $V_2 = \ker(T_{\sigma} + I)$ is then t. It is clear that each subspace of V_1 and V_2 is left fixed by the restriction of T_{σ} , so $\#\mathcal{L}(T_1) = G_{n-t,q}$ and $\#\mathcal{L}(T_2) = G_{t,q}$. \Box

Since $G_{n,q} = \sum_{k=0}^{n} {n \brack k}_{q}$, and since ${n \brack k}_{q}$ is a polynomial in q of degree k(n-k), one expects that $G_{n,q}$ behaves asymptotically like $q^{n^2/4}$ (coming from the q-binomial coefficient with k = n/2). Indeed, Wild [8] showed the

4

following result.

Lemma 1.5. For each fixed prime power q, there are nonzero constants a_1, a_2 (dependent on q) such that

$$G_{2m+1,q} \sim a_1 q^{(2m+1)^2/4}$$
 and $G_{2m,q} \sim a_2 q^{(2m)^2/4}$.

2 Main theorem

Theorem 2.1. Put

$$\tilde{\chi}(n) = \max_{\sigma \neq (1)} \chi_n(\sigma) / G_{n,q}.$$

Then

$$\tilde{\chi}(n) = O(q^{-n/2}).$$

Proof. We split up the permutations into two classes. First, suppose there exists a prime $p_1 \neq p$ such that p_1 divides the length of some cycle in the decomposition of σ into a product of disjoint cycles. Then by Lemma 1.2, there exists N such that σ^N is a product of disjoint cycles of length p_1 . Note that $\chi_n(\sigma) \leq \chi_n(\sigma^N)$. By Lemma 1.3, the minimal polynomial of σ^N is $X^{p_1} - 1$.

Let

$$X^{p_1} - 1 = (X - 1)g_2(X)g_3(X)\cdots g_r(X)$$

be the factorization of $X^{p_1} - 1$ into the product of irreducible polynomials over \mathbb{F}_q . Put $V_i = \ker(g_i(T_{\sigma^N}))$ and $V' = \bigoplus_{i=2}^r V_i$.

From Lemma 1.1, the dimension of V_1 is $c(\sigma^N)$, and from the Primary Decomposition Theorem, the dimension of V' is $n - c(\sigma^N)$. It follows that $\chi_n(\sigma) \leq \chi_n(\sigma^N) \leq G_{c(\sigma^N),q}G_{n-c(\sigma^N),q}$. Now,

$$G_{c(\sigma^N),q}G_{n-c(\sigma^N),q} = O(q^{[c(\sigma^N)^2 + (n-c(\sigma^N))^2]/4}) = O(q^M),$$

where

$$M = \frac{\underline{c(\sigma^N)^2 + (n - c(\sigma^N))^2}}{4}$$
$$= \frac{n^2 - 2c(\sigma^N)[n - c(\sigma^N)]}{4}.$$

It is easy to see that the minimum of $c(\mu)[n - c(\mu)]$ over all nontrivial permutations $\mu \in S_n$ is n-1. (We remark that $n-c(\mu)$ is frequently denoted $|\mu|$ and equals the minimum number of transpositions needed to write μ as a product of transpositions.) Hence, if n is sufficiently large, we have that $\chi_n(\sigma)$ will be bounded by a constant (not dependent on σ) times

$$q^{\frac{n^2}{4}-\frac{n}{2}}$$

Using Lemma 1.5, it follows that $\chi_n(\sigma)/G_{n,q}$ is bounded by a constant times $q^{-\frac{n}{2}}$ if n is sufficiently large.

Our second class of permutations consists of those permutations that are the disjoint product of cycles each having length equal to a power of p. If σ is such a nontrivial permutation, then it follows from Lemma 1.3 that the minimal polynomial of T_{σ} is of the form $X^{p^m} - 1 = (X-1)^{p^m}$ for some m > 0. Now we argue as in [8], pp. 199-200. Since a subspace of V is T_{σ} -invariant if and only if it is $(T_{\sigma} - I)$ -invariant, we have $\mathcal{L}(T_{\sigma}) = \mathcal{L}(T_{\sigma} - I)$. Since $T_{\sigma} - I$ is nilpotent, we may apply the following result due to Brickman and Fillmore:

Lemma 2.2. ([3], Theorem 7). If Q is nilpotent on V, then

$$\mathcal{L}(Q) = \bigcup_{W \in \mathcal{L}(Q|_{Q(V)})} [W, Q^{-1}(W)].$$

where $[W, Q^{-1}(W)]$ is an interval in the lattice of all subspaces of V. Each interval satisfies the equation

$$\dim Q^{-1}(W) - \dim W = \dim \ker Q.$$

In our setting, if we put $Q = T_{\sigma} - I$, then dim ker $Q = c(\sigma)$, and dim $Q(V) = n - c(\sigma)$. Then the number of subspaces in each interval $[W, Q^{-1}(W)]$ is bounded by $G_{c(\sigma),q}$ and $\#\mathcal{L}(Q|_{Q(V)}) \leq G_{n-c(\sigma),q}$, so we have

$$\chi_n(\sigma) = \#\mathcal{L}(T_\sigma - I) \le G_{n-c(\sigma),q}G_{c(\sigma),q}.$$

As in the argument above,

$$G_{n-c(\sigma),q}G_{c(\sigma),q} = O(q^{M'}),$$

where $M' = \frac{n^2 - 2c(\sigma)[n-c(\sigma)]}{4}$. Hence, as above, we get that $\chi_n(\sigma)/G_{n,q}$ is bounded by a constant times $q^{-\frac{n}{2}}$ if n is sufficiently large.

3 Remarks on the action of the wreath product

Let \mathbb{F}_q^{\times} wr S_n denote the wreath product of the multiplicative group of \mathbb{F}_q and the symmetric group S_n . (This is also sometimes called the complete monomial group on \mathbb{F}_q^{\times} , or a generalized symmetric group, since \mathbb{F}_q^{\times} is the cyclic group of order q-1.) We recall (cf.[6]) that the elements of this wreath product look like

$$(\vec{\alpha};\sigma) = (\alpha_1, \alpha_2, \dots, \alpha_n; \sigma),$$

where $\alpha_i \in \mathbb{F}_q^{\times}$ for i = 1, 2, ..., n and $\sigma \in S_n$. The operation in the wreath product is defined by

$$(\vec{\alpha};\sigma)(\vec{\beta};\tau) = (\alpha_1\beta_{\sigma^{-1}(1)},\ldots,\alpha_n\beta_{\sigma^{-1}(n)};\sigma\tau).$$

We have an action of \mathbb{F}_q^{\times} wr S_n on \mathbb{F}_q^n given by

$$(\vec{\alpha};\sigma)\cdot(x_1,x_2,\ldots,x_n)=(\alpha_1x_{\sigma^{-1}(1)},\ldots,\alpha_nx_{\sigma^{-1}(n)}).$$

Thus, this action permutes the coordinates according to the permutation σ and then multiplies the (new) *i*th coordinate by α_i for i = 1, 2, ..., n. This gives a linear mapping $T_{(\vec{\alpha};\sigma)}$ on \mathbb{F}_q^n for each element of \mathbb{F}_q^{\times} wr S_n and the matrix of this linear mapping with respect to the canonical basis is the generalized permutation matrix obtained by permuting the rows of the $n \times n$ identity matrix according to σ and then multiplying the *i*th row by α_i for i = 1, 2, ..., n. We then have an action of \mathbb{F}_q^{\times} wr S_n on $\mathcal{G}_{n,q}$ given by

$$\mathbb{F}_q^{\times} \text{ wr } S_n \xrightarrow{\times} \mathcal{G}_{n,q} \xrightarrow{\to} \mathcal{G}_{n,q} \\
((\vec{\alpha}; \sigma), W) \xrightarrow{} F_{(\vec{\alpha}; \sigma)}(W)$$

Let χ'_n denote the character of the associated permutation representation of \mathbb{F}_q^{\times} wr S_n .

It will not be true here that $\chi'_n((\vec{\alpha}; \sigma))$ will equal $G_{n,q}$ only for the identity element. The diagonal subgroup Δ of \mathbb{F}_q^{\times} wr S_n is defined by

$$\Delta = \{ (\alpha, \alpha, \dots, \alpha; (1)) \mid \alpha \in \mathbb{F}_a^{\times} \}.$$

It is clear that every element in Δ will leave fixed every subspace in $\mathcal{G}_{n,q}$. But, we make the following conjectures. Conjecture 3.1. Put

$$\tilde{\chi}'(n) = \max_{(\vec{\alpha};\sigma)\notin\Delta} \chi'_n((\vec{\alpha};\sigma)) / G_{n,q}$$

Then $\tilde{\chi}'(n) \to 0$ as $n \to \infty$.

Conjecture 3.2.

$$\sum_{(\vec{\alpha};\sigma)\notin\Delta}\chi'_n((\vec{\alpha};\sigma))/G_{n,q}\to 0 \ as \ n\to\infty.$$

Of course, the second conjecture is stronger than the first. Assuming the second conjecture is true, one can give, asymptotically, the number of inequivalent codes. Let $C_{n,q}$ denote the number of distinct equivalence classes of q-ary linear codes of length n. Then $C_{n,q}$ is the number of orbits of the action of \mathbb{F}_q^{\times} wr S_n on $\mathcal{G}_{n,q}$. By the Cauchy-Frobenius (or Burnside) Lemma, this number is

$$\frac{1}{(q-1)^n n!} \sum_{(\vec{\alpha};\sigma) \in \mathbb{F}_q^{\times} \text{ wr } S_n} \chi'_n((\vec{\alpha};\sigma)).$$

Assuming the truth of Conjecture (3.2), then we have

$$C_{n,q} \sim \frac{G_{n,q}}{(q-1)^{n-1}n!}.$$

References

- P. Biane, Representations of symmetric groups and free probability, Adv. Math. 138 (1998), 126–181.
- [2] P. Biane, Free cumulants and representations of large symmetric groups, XIIIth International congress on mathematical physics, (London, 2000), 321-326, Int. Press, Boston, MA, 2001
- [3] L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822.
- [4] J. Goldman and G.-C. Rota, The number of subspaces of a vector space, in "Recent progress in combinatorics" (W. Tutte, Ed.), pp. 75–83. Academic Press, San Diego, CA, 1969.

- [5] K. Hoffman and R. Kunze, Linear algebra, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1971.
- [6] A. Kerber, Applied group actions, 2nd edition, Springer, Berlin-Heidelberg-New York, 1999.
- [7] A. M. Vershik and S. V. Kerov, Asymptotic theory of characters of the symmetric group, Funct. Anal. and its Appl. 15 (1981), 246–255.
- [8] M. Wild, The asymptotic number of inequivalent binary codes and nonisomorphic binary matriods, Finite Fields Appl. 6 (2000), 192–202.