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A binary code of length n is a subspace of the vector space F
n
2 . Two such

codes are equivalent if one can be obtained from the other by permuting co-
ordinates. Thus, one can consider the action of Sn on the set of all subspaces
of F

n
2 defined by permuting coordinates, and the equivalence classes of binary

codes of length n are exactly the orbits of this action.
More generally, one can consider the action of Sn on all subspaces of F

n
q ,

but two q-ary codes of length n are equivalent if one can be obtained from
the other by permuting coordinates and/or multiplying some coordinates by
nonzero elements of Fq. This leads one to consider the action of the wreath
product of F

×
q and Sn on the subspaces of F

n
q , and the equivalence classes of

q-ary codes of length n are the orbits of this action.
Let Gn,q denote the number of subspaces of the vector space F

n
q . This

number was called a Galois number by J. Goldman and G.-C. Rota [4], and
they showed that

Gn,q =
n

∑

k=0

[

n
k

]

q

,

where

[

n
k

]

q

is the q-binomial coefficient.

If f, g : N → R
+, then we write f ∼ g if f(n)/g(n) → 1 as n → ∞.

We write f(n) = O(g(n)) if there exists a constant C and an integer n0

such that f(n) ≤ Cg(n) for all n ≥ n0. Let b(n) denote the number of
distinct equivalence classes of binary codes of length n. M. Wild [8] claimed
that, asymptotically, b(n) ∼ Gn,2/n!. However, there is a mistake in the
proof of (24) in [8]. In that argument, if σ ∈ Sn and σ is the product of
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disjoint cycles C1, . . . , Cr, then ρ(σ) denotes the number of the cycles Cj

that have length equal to a power of 2 (including 20). If the length of Cj

is lj and one writes lj = 2αjuj, with uj odd and αj ≥ 0, for j = 1, . . . , r,
then µ1 = max{2αj |1 ≤ j ≤ r}. Wild puts τ = σµ1 and claims in the proof
of (24) that ρ(τ) = ρ(σ). However, this is false. For example, if n is even
and σ is a product of n/2 disjoint transpositions, then τ is the identity, so
ρ(τ) = n while ρ(σ) = n/2. In a private communication, Wild suggested that
the definition of ρ could be changed to equal the sum of the lengths of those
Cj that have length equal to a power of 2. This would allow the proof of his
(24) to go through, but it creates a problem in the proof of his (25). There
does not appear to be an easy way to fix this gap in Wild’s arguments. Let
Gn,q denote the set of all subspaces of the vector space F

n
q . Then Sn acts on

Gn,q by permuting the coordinates of F
n
q , and we let χn denote the character

of the associated permutation representation. Thus, if σ ∈ Sn, then

χn(σ) = #{W ∈ Gn,q|σ · W = W}.

Our main result is that, for all q, the normalized character χn/Gn,q asymp-
totically approaches the trivial character (which takes the value 1 on the
identity and 0 on all other permutations). In order to prove Wild’s result,
one needs that

∑

σ 6=(1)

χn(σ)/Gn,2 → 0 as n → ∞,

where (1) denotes the identity permutation, so our result when q = 2 is
weaker. Our results are not surprising in light of the work of A. M. Vershik
and S. V. Kerov [7] and P. Biane [1, 2], who have shown that the normalized
characters of irreducible representations of Sn corrresponding to “balanced”
Young diagrams approach the trivial character asymptotically.

We thank W. A. Adkins and James Oxley for very helpful conversations
and suggestions.

1 Preliminaries

Let q be a power of a prime p. We define an action of Sn on F
n
q as follows.

If we think of an element (x1, x2, . . . , xn) of F
n
q as being the mapping φ :

{1, 2, . . . , n} → Fq that takes i to xi, then, given σ ∈ Sn, we define σφ to be
the mapping φ ◦ σ−1. So, if σ ∈ Sn, then let

Tσ : F
n
q → F

n
q
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denote the linear map that sends (x1, x2, . . . , xn) to

(xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

The matrix of Tσ relative to the canonical basis of F
n
q is just the permutation

matrix obtained by applying the permutation σ to the rows of the n × n
identity matrix.

We then have an action of Sn on Gn,q given by

Sn × Gn,q → Gn,q

(σ,W ) 7→ Tσ(W )

This differs from the action defined in [8], but agrees with the action defined
in [6]. Let χn denote the character of the associated permutation represen-
tation of Sn.

Let T be a linear transformation on a finite-dimensional vector space V .
The lattice L(T ) of T -invariant subspaces consists of all subspaces W of V
such that T (W ) ⊆ W . Then, with notation as above, we have χn(σ) =
#L(Tσ). Let gn1

1 (X)gn2
2 (X) · · · gns

s (X) be the factorization of the minimal
polynomial of T into a product of powers of irreducible polynomials over Fq.
Put

Vi = ker gi(T )ni and Ti = T |Vi

for i = 1, 2, . . . , s. The Primary Decomposition Theorem [5] says that V =
⊕s

i=1Vi, each Vi is invariant under T , and the minimal polynomial of Ti is
gni

i (X). Also, from [3], we have that

L(T ) = ⊕s
i=1L(Ti).

The dimension of the subspace of vectors left fixed by Tσ is well-known.
Write σ as the product of disjoint cycles, including cycles of length 1. Let
c(σ) denote the number of cycles in this decomposition.

Lemma 1.1. The dimension of ker(Tσ − I) is c(σ).

Proof. Let ~x = (x1, x2, . . . , xn) ∈ F
n
q . Write σ as a product of disjoint cycles.

Then Tσ leaves ~x fixed precisely when, for each cycle (i1, i2, . . . , im) in this
product, we have xi1 = xi2 = · · · = xim . Therefore, σ leaves qc(σ) vectors
fixed.
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Lemma 1.2. Suppose σ = C1C2 · · ·Cr is the product of disjoint cycles of
lengths l1, l2, . . . , lr, respectively. If p1 is a prime divisor of lj for some j =
1, 2, . . . , r, then there exists N such that σN is a product of disjoint cycles of
length p1.

Proof. Let N ′ denote the least common multiple of l1, l2, . . . , lr. Then N ′ is
the order of σ in the symmetric group. Put N = N ′/p1. Then the order of
σN is p1, which implies that σN is a product of disjoint cycles of length p1.

Lemma 1.3. Let σ be a product of disjoint cycles of lengths mr1 , . . . , mrs,
where r1 ≥ r2 ≥ · · · ≥ rs ≥ 0. Then the minimal polynomial of Tσ is
Xmr1 − 1.

Proof. Clearly, (Tσ)mr1 is the identity map. Now let f(X) be a polynomial
with leading term adX

d, where d < mr1 . Without loss of generality, we may
assume that the decomposition of σ as a product of disjoint cycles contains
the cycle (1, 2, . . . ,mr1). Then the image of the n-tuple (1, 0, 0, . . . , 0) under
the map f(Tσ) is the n-tuple with ad in the (d+1)st coordinate, hence f(Tσ)
is nonzero.

In the special case when σ is the product of disjoint transpositions and
p 6= 2, we can give the value of χn(σ) exactly.

Proposition 1.4. Suppose p 6= 2. Let σ be the product of t disjoint transpo-
sitions. Then

χn(σ) = Gn−t,q · Gt,q.

Proof. The minimal polynomial of Tσ is (X − 1)(X + 1). The dimension
of V1 = ker(Tσ − I) is c(σ) = t + n − 2t = n − t, and the dimension of
V2 = ker(Tσ + I) is then t. It is clear that each subspace of V1 and V2 is left
fixed by the restriction of Tσ, so #L(T1) = Gn−t,q and #L(T2) = Gt,q.

Since Gn,q =
∑n

k=0

[

n
k

]

q

, and since

[

n
k

]

q

is a polynomial in q of degree

k(n − k), one expects that Gn,q behaves asymptotically like qn2/4 (coming
from the q-binomial coefficient with k = n/2) . Indeed, Wild [8] showed the
following result.
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Lemma 1.5. For each fixed prime power q, there are nonzero constants a1, a2

(dependent on q) such that

G2m+1,q ∼ a1q
(2m+1)2/4 and G2m,q ∼ a2q

(2m)2/4.

2 Main theorem

Theorem 2.1. Put
χ̃(n) = max

σ 6=(1)
χn(σ)/Gn,q.

Then
χ̃(n) = O(q−n/2).

Proof. We split up the permutations into two classes. First, suppose there
exists a prime p1 6= p such that p1 divides the length of some cycle in the
decomposition of σ into a product of disjoint cycles. Then by Lemma 1.2,
there exists N such that σN is a product of disjoint cycles of length p1. Note
that χn(σ) ≤ χn(σN). By Lemma 1.3, the minimal polynomial of σN is
Xp1 − 1.

Let
Xp1 − 1 = (X − 1)g2(X)g3(X) · · · gr(X)

be the factorization of Xp1 − 1 into the product of irreducible polynomials
over Fq. Put Vi = ker(gi(TσN )) and V ′ = ⊕r

i=2Vi.
From Lemma 1.1, the dimension of V1 is c(σN), and from the Primary

Decomposition Theorem, the dimension of V ′ is n − c(σN). It follows that
χn(σ) ≤ χn(σN) ≤ Gc(σN ),qGn−c(σN ),q. Now,

Gc(σN ),qGn−c(σN ),q = O(q[c(σN )2+(n−c(σN ))2]/4) = O(qM),

where
M = c(σN )2+(n−c(σN ))2

4

= n2−2c(σN )[n−c(σN )]
4

.

It is easy to see that the minimum of c(µ)[n − c(µ)] over all nontrivial
permutations µ ∈ Sn is n−1. (We remark that n−c(µ) is frequently denoted
|µ| and equals the minimum number of transpositions needed to write µ as
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a product of transpositions.) Hence, if n is sufficiently large, we have that
χn(σ) will be bounded by a constant (not dependent on σ) times

q
n2

4
−n

2 .

Using Lemma 1.5, it follows that χn(σ)/Gn,q is bounded by a constant times
q−

n
2 if n is sufficiently large.
Our second class of permutations consists of those permutations that are

the disjoint product of cycles each having length equal to a power of p. If
σ is such a nontrivial permutation, then it follows from Lemma 1.3 that the
minimal polynomial of Tσ is of the form Xpm

−1 = (X−1)pm

for some m > 0.
Now we argue as in [8], pp. 199-200. Since a subspace of V is Tσ-invariant if
and only if it is (Tσ−I)-invariant, we have L(Tσ) = L(Tσ−I). Since Tσ−I is
nilpotent, we may apply the following result due to Brickman and Fillmore:

Lemma 2.2. ([3], Theorem 7). If Q is nilpotent on V , then

L(Q) = ∪W∈L(Q|Q(V ))[W,Q−1(W )],

where [W,Q−1(W )] is an interval in the lattice of all subspaces of V . Each
interval satisfies the equation

dim Q−1(W ) − dim W = dim ker Q.

In our setting, if we put Q = Tσ − I, then dim ker Q = c(σ), and
dim Q(V ) = n − c(σ). Then the number of subspaces in each interval
[W,Q−1(W )] is bounded by Gc(σ),q and #L(Q|Q(V )) ≤ Gn−c(σ),q, so we have

χn(σ) = #L(Tσ − I) ≤ Gn−c(σ),qGc(σ),q.

As in the argument above,

Gn−c(σ),qGc(σ),q = O(qM ′

),

where M ′ = n2−2c(σ)[n−c(σ)]
4

. Hence, as above, we get that χn(σ)/Gn,q is
bounded by a constant times q−

n
2 if n is sufficiently large.
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3 Remarks on the action of the wreath prod-

uct

Let F
×
q wr Sn denote the wreath product of the multiplicative group of Fq

and the symmetric group Sn. (This is also sometimes called the complete
monomial group on F

×
q , or a generalized symmetric group, since F

×
q is the

cyclic group of order q−1.) We recall (cf.[6]) that the elements of this wreath
product look like

(~α; σ) = (α1, α2, . . . , αn; σ),

where αi ∈ F
×
q for i = 1, 2, . . . , n and σ ∈ Sn. The operation in the wreath

product is defined by

(~α; σ)(~β; τ) = (α1βσ−1(1), . . . , αnβσ−1(n); στ).

We have an action of F
×
q wr Sn on F

n
q given by

(~α; σ) · (x1, x2, . . . , xn) = (α1xσ−1(1), . . . , αnxσ−1(n)).

Thus, this action permutes the coordinates according to the permutation
σ and then multiplies the (new) ith coordinate by αi for i = 1, 2, . . . , n.
This gives a linear mapping T(~α;σ) on F

n
q for each element of F

×
q wr Sn and

the matrix of this linear mapping with respect to the canonical basis is the
generalized permutation matrix obtained by permuting the rows of the n×n
identity matrix according to σ and then multiplying the ith row by αi for
i = 1, 2, . . . , n. We then have an action of F

×
q wr Sn on Gn,q given by

F
×
q wr Sn × Gn,q → Gn,q

((~α; σ),W ) 7→ T(~α;σ)(W )

Let χ′
n denote the character of the associated permutation representation

of F
×
q wr Sn.
It will not be true here that χ′

n((~α; σ)) will equal Gn,q only for the identity
element. The diagonal subgroup ∆ of F

×
q wr Sn is defined by

∆ = {(α, α, . . . , α; (1)) |α ∈ F
×
q }.

It is clear that every element in ∆ will leave fixed every subspace in Gn,q.
But, we make the following conjectures.
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Conjecture 3.1. Put

χ̃′(n) = max
(~α;σ)/∈∆

χ′
n((~α; σ))/Gn,q.

Then χ̃′(n) → 0 as n → ∞.

Conjecture 3.2.

∑

(~α;σ)/∈∆

χ′
n((~α; σ))/Gn,q → 0 as n → ∞.

Of course, the second conjecture is stronger than the first. Assuming
the second conjecture is true, one can give, asymptotically, the number of
inequivalent codes. Let Cn,q denote the number of distinct equivalence classes
of q-ary linear codes of length n. Then Cn,q is the number of orbits of the
action of F

×
q wr Sn on Gn,q. By the Cauchy-Frobenius (or Burnside) Lemma,

this number is
1

(q − 1)nn!

∑

(~α;σ)∈F
×

q wr Sn

χ′
n((~α; σ)).

Assuming the truth of Conjecture (3.2), then we have

Cn,q ∼
Gn,q

(q − 1)n−1n!
.
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