On the Character of S_{n} acting on Subspaces of \mathbb{F}_{q}^{n}

R. F. Lax

September 4, 2003

A binary code of length n is a subspace of the vector space \mathbb{F}_{2}^{n}. Two such codes are equivalent if one can be obtained from the other by permuting coordinates. Thus, one can consider the action of S_{n} on the set of all subspaces of \mathbb{F}_{2}^{n} defined by permuting coordinates, and the equivalence classes of binary codes of length n are exactly the orbits of this action.

More generally, one can consider the action of S_{n} on all subspaces of \mathbb{F}_{q}^{n}, but two q-ary codes of length n are equivalent if one can be obtained from the other by permuting coordinates and/or multiplying some coordinates by nonzero elements of \mathbb{F}_{q}. This leads one to consider the action of the wreath product of \mathbb{F}_{q}^{\times}and S_{n} on the subspaces of \mathbb{F}_{q}^{n}, and the equivalence classes of q-ary codes of length n are the orbits of this action.

Let $G_{n, q}$ denote the number of subspaces of the vector space \mathbb{F}_{q}^{n}. This number was called a Galois number by J. Goldman and G.-C. Rota [4], and they showed that

$$
G_{n, q}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient.
If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, then we write $f \sim g$ if $f(n) / g(n) \rightarrow 1$ as $n \rightarrow \infty$. We write $f(n)=O(g(n))$ if there exists a constant C and an integer n_{0} such that $f(n) \leq C g(n)$ for all $n \geq n_{0}$. Let $b(n)$ denote the number of distinct equivalence classes of binary codes of length n. M. Wild [8] claimed that, asymptotically, $b(n) \sim G_{n, 2} / n$!. However, there is a mistake in the proof of (24) in [8]. In that argument, if $\sigma \in S_{n}$ and σ is the product of
disjoint cycles C_{1}, \ldots, C_{r}, then $\rho(\sigma)$ denotes the number of the cycles C_{j} that have length equal to a power of 2 (including 2^{0}). If the length of C_{j} is l_{j} and one writes $l_{j}=2^{\alpha_{j}} u_{j}$, with u_{j} odd and $\alpha_{j} \geq 0$, for $j=1, \ldots, r$, then $\mu_{1}=\max \left\{2^{\alpha_{j}} \mid 1 \leq j \leq r\right\}$. Wild puts $\tau=\sigma^{\mu_{1}}$ and claims in the proof of (24) that $\rho(\tau)=\rho(\sigma)$. However, this is false. For example, if n is even and σ is a product of $n / 2$ disjoint transpositions, then τ is the identity, so $\rho(\tau)=n$ while $\rho(\sigma)=n / 2$. In a private communication, Wild suggested that the definition of ρ could be changed to equal the sum of the lengths of those C_{j} that have length equal to a power of 2 . This would allow the proof of his (24) to go through, but it creates a problem in the proof of his (25). There does not appear to be an easy way to fix this gap in Wild's arguments. Let $\mathcal{G}_{n, q}$ denote the set of all subspaces of the vector space \mathbb{F}_{q}^{n}. Then S_{n} acts on $\mathcal{G}_{n, q}$ by permuting the coordinates of \mathbb{F}_{q}^{n}, and we let χ_{n} denote the character of the associated permutation representation. Thus, if $\sigma \in S_{n}$, then

$$
\chi_{n}(\sigma)=\#\left\{W \in \mathcal{G}_{n, q} \mid \sigma \cdot W=W\right\}
$$

Our main result is that, for all q, the normalized character $\chi_{n} / G_{n, q}$ asymptotically approaches the trivial character (which takes the value 1 on the identity and 0 on all other permutations). In order to prove Wild's result, one needs that

$$
\sum_{\sigma \neq(1)} \chi_{n}(\sigma) / G_{n, 2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

where (1) denotes the identity permutation, so our result when $q=2$ is weaker. Our results are not surprising in light of the work of A. M. Vershik and S. V. Kerov [7] and P. Biane [1, 2], who have shown that the normalized characters of irreducible representations of S_{n} corrresponding to "balanced" Young diagrams approach the trivial character asymptotically.

We thank W. A. Adkins and James Oxley for very helpful conversations and suggestions.

1 Preliminaries

Let q be a power of a prime p. We define an action of S_{n} on \mathbb{F}_{q}^{n} as follows. If we think of an element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of \mathbb{F}_{q}^{n} as being the mapping ϕ : $\{1,2, \ldots, n\} \rightarrow \mathbb{F}_{q}$ that takes i to x_{i}, then, given $\sigma \in S_{n}$, we define $\sigma \phi$ to be the mapping $\phi \circ \sigma^{-1}$. So, if $\sigma \in S_{n}$, then let

$$
T_{\sigma}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}
$$

denote the linear map that sends $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to

$$
\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(n)}\right) .
$$

The matrix of T_{σ} relative to the canonical basis of \mathbb{F}_{q}^{n} is just the permutation matrix obtained by applying the permutation σ to the rows of the $n \times n$ identity matrix.

We then have an action of S_{n} on $\mathcal{G}_{n, q}$ given by

$$
\begin{array}{ccccc}
S_{n} & \times & \mathcal{G}_{n, q} & \rightarrow & \mathcal{G}_{n, q} \\
& (\sigma, W) & & \mapsto & T_{\sigma}(W)
\end{array}
$$

This differs from the action defined in [8], but agrees with the action defined in [6]. Let χ_{n} denote the character of the associated permutation representation of S_{n}.

Let T be a linear transformation on a finite-dimensional vector space V. The lattice $\mathcal{L}(T)$ of T-invariant subspaces consists of all subspaces W of V such that $T(W) \subseteq W$. Then, with notation as above, we have $\chi_{n}(\sigma)=$ $\# \mathcal{L}\left(T_{\sigma}\right)$. Let $g_{1}^{n_{1}}(X) g_{2}^{n_{2}}(X) \cdots g_{s}^{n_{s}}(X)$ be the factorization of the minimal polynomial of T into a product of powers of irreducible polynomials over \mathbb{F}_{q}. Put

$$
V_{i}=\operatorname{ker} g_{i}(T)^{n_{i}} \text { and } T_{i}=\left.T\right|_{V_{i}}
$$

for $i=1,2, \ldots, s$. The Primary Decomposition Theorem [5] says that $V=$ $\oplus_{i=1}^{s} V_{i}$, each V_{i} is invariant under T, and the minimal polynomial of T_{i} is $g_{i}^{n_{i}}(X)$. Also, from [3], we have that

$$
\mathcal{L}(T)=\oplus_{i=1}^{s} \mathcal{L}\left(T_{i}\right) .
$$

The dimension of the subspace of vectors left fixed by T_{σ} is well-known. Write σ as the product of disjoint cycles, including cycles of length 1 . Let $c(\sigma)$ denote the number of cycles in this decomposition.

Lemma 1.1. The dimension of $\operatorname{ker}\left(T_{\sigma}-I\right)$ is $c(\sigma)$.
Proof. Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$. Write σ as a product of disjoint cycles. Then T_{σ} leaves \vec{x} fixed precisely when, for each cycle $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ in this product, we have $x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{m}}$. Therefore, σ leaves $q^{c(\sigma)}$ vectors fixed.

Lemma 1.2. Suppose $\sigma=C_{1} C_{2} \cdots C_{r}$ is the product of disjoint cycles of lengths $l_{1}, l_{2}, \ldots, l_{r}$, respectively. If p_{1} is a prime divisor of l_{j} for some $j=$ $1,2, \ldots, r$, then there exists N such that σ^{N} is a product of disjoint cycles of length p_{1}.

Proof. Let N^{\prime} denote the least common multiple of $l_{1}, l_{2}, \ldots, l_{r}$. Then N^{\prime} is the order of σ in the symmetric group. Put $N=N^{\prime} / p_{1}$. Then the order of σ^{N} is p_{1}, which implies that σ^{N} is a product of disjoint cycles of length p_{1}.

Lemma 1.3. Let σ be a product of disjoint cycles of lengths $m^{r_{1}}, \ldots, m^{r_{s}}$, where $r_{1} \geq r_{2} \geq \cdots \geq r_{s} \geq 0$. Then the minimal polynomial of T_{σ} is $X^{m^{r_{1}}}-1$.

Proof. Clearly, $\left(T_{\sigma}\right)^{m^{r_{1}}}$ is the identity map. Now let $f(X)$ be a polynomial with leading term $a_{d} X^{d}$, where $d<m^{r_{1}}$. Without loss of generality, we may assume that the decomposition of σ as a product of disjoint cycles contains the cycle $\left(1,2, \ldots, m^{r_{1}}\right)$. Then the image of the n-tuple $(1,0,0, \ldots, 0)$ under the map $f\left(T_{\sigma}\right)$ is the n-tuple with a_{d} in the $(d+1)$ st coordinate, hence $f\left(T_{\sigma}\right)$ is nonzero.

In the special case when σ is the product of disjoint transpositions and $p \neq 2$, we can give the value of $\chi_{n}(\sigma)$ exactly.

Proposition 1.4. Suppose $p \neq 2$. Let σ be the product of t disjoint transpositions. Then

$$
\chi_{n}(\sigma)=G_{n-t, q} \cdot G_{t, q}
$$

Proof. The minimal polynomial of T_{σ} is $(X-1)(X+1)$. The dimension of $V_{1}=\operatorname{ker}\left(T_{\sigma}-I\right)$ is $c(\sigma)=t+n-2 t=n-t$, and the dimension of $V_{2}=\operatorname{ker}\left(T_{\sigma}+I\right)$ is then t. It is clear that each subspace of V_{1} and V_{2} is left fixed by the restriction of T_{σ}, so $\# \mathcal{L}\left(T_{1}\right)=G_{n-t, q}$ and $\# \mathcal{L}\left(T_{2}\right)=G_{t, q}$.

Since $G_{n, q}=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, and since $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a polynomial in q of degree $k(n-k)$, one expects that $G_{n, q}$ behaves asymptotically like $q^{n^{2} / 4}$ (coming from the q-binomial coefficient with $k=n / 2$). Indeed, Wild [8] showed the following result.

Lemma 1.5. For each fixed prime power q, there are nonzero constants a_{1}, a_{2} (dependent on q) such that

$$
G_{2 m+1, q} \sim a_{1} q^{(2 m+1)^{2} / 4} \text { and } G_{2 m, q} \sim a_{2} q^{(2 m)^{2} / 4}
$$

2 Main theorem

Theorem 2.1. Put

$$
\tilde{\chi}(n)=\max _{\sigma \neq(1)} \chi_{n}(\sigma) / G_{n, q} .
$$

Then

$$
\tilde{\chi}(n)=O\left(q^{-n / 2}\right) .
$$

Proof. We split up the permutations into two classes. First, suppose there exists a prime $p_{1} \neq p$ such that p_{1} divides the length of some cycle in the decomposition of σ into a product of disjoint cycles. Then by Lemma 1.2, there exists N such that σ^{N} is a product of disjoint cycles of length p_{1}. Note that $\chi_{n}(\sigma) \leq \chi_{n}\left(\sigma^{N}\right)$. By Lemma 1.3, the minimal polynomial of σ^{N} is $X^{p_{1}}-1$.

Let

$$
X^{p_{1}}-1=(X-1) g_{2}(X) g_{3}(X) \cdots g_{r}(X)
$$

be the factorization of $X^{p_{1}}-1$ into the product of irreducible polynomials over \mathbb{F}_{q}. Put $V_{i}=\operatorname{ker}\left(g_{i}\left(T_{\sigma^{N}}\right)\right)$ and $V^{\prime}=\oplus_{i=2}^{r} V_{i}$.

From Lemma 1.1, the dimension of V_{1} is $c\left(\sigma^{N}\right)$, and from the Primary Decomposition Theorem, the dimension of V^{\prime} is $n-c\left(\sigma^{N}\right)$. It follows that $\chi_{n}(\sigma) \leq \chi_{n}\left(\sigma^{N}\right) \leq G_{c\left(\sigma^{N}\right), q} G_{n-c\left(\sigma^{N}\right), q}$. Now,

$$
G_{c\left(\sigma^{N}\right), q} G_{n-c\left(\sigma^{N}\right), q}=O\left(q^{\left[c\left(\sigma^{N}\right)^{2}+\left(n-c\left(\sigma^{N}\right)\right)^{2}\right] / 4}\right)=O\left(q^{M}\right),
$$

where

$$
\begin{aligned}
M & =\frac{c\left(\sigma^{N}\right)^{2}+\left(n-c\left(\sigma^{N}\right)\right)^{2}}{4} \\
& =\frac{n^{2}-2 c\left(\sigma^{N}\right)\left[n-c\left(\sigma^{N}\right)\right]}{4} .
\end{aligned}
$$

It is easy to see that the minimum of $c(\mu)[n-c(\mu)]$ over all nontrivial permutations $\mu \in S_{n}$ is $n-1$. (We remark that $n-c(\mu)$ is frequently denoted $|\mu|$ and equals the minimum number of transpositions needed to write μ as
a product of transpositions.) Hence, if n is sufficiently large, we have that $\chi_{n}(\sigma)$ will be bounded by a constant (not dependent on σ) times

$$
q^{\frac{n^{2}}{4}-\frac{n}{2}} .
$$

Using Lemma 1.5, it follows that $\chi_{n}(\sigma) / G_{n, q}$ is bounded by a constant times $q^{-\frac{n}{2}}$ if n is sufficiently large.

Our second class of permutations consists of those permutations that are the disjoint product of cycles each having length equal to a power of p. If σ is such a nontrivial permutation, then it follows from Lemma 1.3 that the minimal polynomial of T_{σ} is of the form $X^{p^{m}}-1=(X-1)^{p^{m}}$ for some $m>0$. Now we argue as in [8], pp. 199-200. Since a subspace of V is T_{σ}-invariant if and only if it is $\left(T_{\sigma}-I\right)$-invariant, we have $\mathcal{L}\left(T_{\sigma}\right)=\mathcal{L}\left(T_{\sigma}-I\right)$. Since $T_{\sigma}-I$ is nilpotent, we may apply the following result due to Brickman and Fillmore:
Lemma 2.2. ([3], Theorem 7). If Q is nilpotent on V, then

$$
\mathcal{L}(Q)=\cup_{W \in \mathcal{L}\left(\left.Q\right|_{Q(V)}\right)}\left[W, Q^{-1}(W)\right],
$$

where $\left[W, Q^{-1}(W)\right]$ is an interval in the lattice of all subspaces of V. Each interval satisfies the equation

$$
\operatorname{dim} Q^{-1}(W)-\operatorname{dim} W=\operatorname{dim} \operatorname{ker} Q
$$

In our setting, if we put $Q=T_{\sigma}-I$, then $\operatorname{dim} \operatorname{ker} Q=c(\sigma)$, and $\operatorname{dim} Q(V)=n-c(\sigma)$. Then the number of subspaces in each interval $\left[W, Q^{-1}(W)\right]$ is bounded by $G_{c(\sigma), q}$ and $\# \mathcal{L}\left(\left.Q\right|_{Q(V)}\right) \leq G_{n-c(\sigma), q}$, so we have

$$
\chi_{n}(\sigma)=\# \mathcal{L}\left(T_{\sigma}-I\right) \leq G_{n-c(\sigma), q} G_{c(\sigma), q} .
$$

As in the argument above,

$$
G_{n-c(\sigma), q} G_{c(\sigma), q}=O\left(q^{M^{\prime}}\right)
$$

where $M^{\prime}=\frac{n^{2}-2 c(\sigma)[n-c(\sigma)]}{4}$. Hence, as above, we get that $\chi_{n}(\sigma) / G_{n, q}$ is bounded by a constant times $q^{-\frac{n}{2}}$ if n is sufficiently large.

3 Remarks on the action of the wreath product

Let \mathbb{F}_{q}^{\times}wr S_{n} denote the wreath product of the multiplicative group of \mathbb{F}_{q} and the symmetric group S_{n}. (This is also sometimes called the complete monomial group on \mathbb{F}_{q}^{\times}, or a generalized symmetric group, since \mathbb{F}_{q}^{\times}is the cyclic group of order $q-1$.) We recall (cf.[6]) that the elements of this wreath product look like

$$
(\vec{\alpha} ; \sigma)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} ; \sigma\right)
$$

where $\alpha_{i} \in \mathbb{F}_{q}^{\times}$for $i=1,2, \ldots, n$ and $\sigma \in S_{n}$. The operation in the wreath product is defined by

$$
(\vec{\alpha} ; \sigma)(\vec{\beta} ; \tau)=\left(\alpha_{1} \beta_{\sigma^{-1}(1)}, \ldots, \alpha_{n} \beta_{\sigma^{-1}(n)} ; \sigma \tau\right)
$$

We have an action of \mathbb{F}_{q}^{\times}wr S_{n} on \mathbb{F}_{q}^{n} given by

$$
(\vec{\alpha} ; \sigma) \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha_{1} x_{\sigma^{-1}(1)}, \ldots, \alpha_{n} x_{\sigma^{-1}(n)}\right) .
$$

Thus, this action permutes the coordinates according to the permutation σ and then multiplies the (new) i th coordinate by α_{i} for $i=1,2, \ldots, n$. This gives a linear mapping $T_{(\vec{\alpha} ; \sigma)}$ on \mathbb{F}_{q}^{n} for each element of \mathbb{F}_{q}^{\times}wr S_{n} and the matrix of this linear mapping with respect to the canonical basis is the generalized permutation matrix obtained by permuting the rows of the $n \times n$ identity matrix according to σ and then multiplying the i th row by α_{i} for $i=1,2, \ldots, n$. We then have an action of \mathbb{F}_{q}^{\times}wr S_{n} on $\mathcal{G}_{n, q}$ given by

$$
\mathbb{F}_{q}^{\times} \text {wr } S_{n} \begin{array}{cccc}
\times & \mathcal{G}_{n, q} & \rightarrow & \mathcal{G}_{n, q} \\
& ((\vec{\alpha} ; \sigma), W) & & \mapsto
\end{array} T_{(\vec{\alpha} ; \sigma)}(W)
$$

Let χ_{n}^{\prime} denote the character of the associated permutation representation of \mathbb{F}_{q}^{\times}wr S_{n}.

It will not be true here that $\chi_{n}^{\prime}((\vec{\alpha} ; \sigma))$ will equal $G_{n, q}$ only for the identity element. The diagonal subgroup Δ of \mathbb{F}_{q}^{\times}wr S_{n} is defined by

$$
\Delta=\left\{(\alpha, \alpha, \ldots, \alpha ;(1)) \mid \alpha \in \mathbb{F}_{q}^{\times}\right\}
$$

It is clear that every element in Δ will leave fixed every subspace in $\mathcal{G}_{n, q}$. But, we make the following conjectures.

Conjecture 3.1. Put

$$
\tilde{\chi}^{\prime}(n)=\max _{(\vec{\alpha} ; \sigma) \notin \Delta} \chi_{n}^{\prime}((\vec{\alpha} ; \sigma)) / G_{n, q}
$$

Then $\tilde{\chi}^{\prime}(n) \rightarrow 0$ as $n \rightarrow \infty$.

Conjecture 3.2.

$$
\sum_{(\vec{\alpha} ; \sigma) \notin \Delta} \chi_{n}^{\prime}((\vec{\alpha} ; \sigma)) / G_{n, q} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Of course, the second conjecture is stronger than the first. Assuming the second conjecture is true, one can give, asymptotically, the number of inequivalent codes. Let $C_{n, q}$ denote the number of distinct equivalence classes of q-ary linear codes of length n. Then $C_{n, q}$ is the number of orbits of the action of \mathbb{F}_{q}^{\times}wr S_{n} on $\mathcal{G}_{n, q}$. By the Cauchy-Frobenius (or Burnside) Lemma, this number is

$$
\frac{1}{(q-1)^{n} n!} \sum_{(\vec{\alpha} ; \sigma) \in \mathbb{F}_{q}^{\times} \text {wr } S_{n}} \chi_{n}^{\prime}((\vec{\alpha} ; \sigma)) .
$$

Assuming the truth of Conjecture (3.2), then we have

$$
C_{n, q} \sim \frac{G_{n, q}}{(q-1)^{n-1} n!}
$$

References

[1] P. Biane, Representations of symmetric groups and free probability, Adv. Math. 138 (1998), 126-181.
[2] P. Biane, Free cumulants and representations of large symmetric groups, XIIIth International congress on mathematical physics, (London, 2000), 321-326, Int. Press, Boston, MA, 2001
[3] L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822.
[4] J. Goldman and G.-C. Rota, The number of subspaces of a vector space, in "Recent progress in combinatorics" (W. Tutte, Ed.), pp. 75-83. Academic Press, San Diego, CA, 1969.
[5] K. Hoffman and R. Kunze, Linear algebra, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1971.
[6] A. Kerber, Applied group actions, 2nd edition, Springer, Berlin-Heidelberg-New York, 1999.
[7] A. M. Vershik and S. V. Kerov, Asymptotic theory of characters of the symmetric group, Funct. Anal. and its Appl. 15 (1981), 246-255.
[8] M. Wild, The asymptotic number of inequivalent binary codes and nonisomorphic binary matriods, Finite Fields Appl. 6 (2000), 192-202.

