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Abstract
The weighted complementarity problem (denoted by WCP) significantly extends the
general complementarity problem and can be used for modeling a larger class of
problems from science and engineering. In this paper, by introducing a one-parametric
class of smoothing functionswhich includes theweight vector,wepropose a smoothing
Newton algorithm with nonmonotone line search to solve WCP. We show that any
accumulation point of the iterates generated by this algorithm, if exists, is a solution
of the considered WCP. Moreover, when the solution set of WCP is nonempty, under
assumptions weaker than the Jacobian nonsingularity assumption, we prove that the
iteration sequence generated byour algorithm is bounded and converges to one solution
of WCP with local superlinear or quadratic convergence rate. Promising numerical
results are also reported.
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1 Introduction

The weighted complementarity problem (WCP) was introduced by Potra [30]. Let
(V, 〈·, ·〉, ◦) be a Euclidean Jordan algebra [6] and K = {x ◦ x : x ∈ V} be the
symmetric cone formed by the squares of its elements. Given a vector w ∈ K, WCP
is the problem of finding (x, s, y) ∈ V × V × Rm such that

(WCP) x ∈ K, s ∈ K, F(x, s, y) = 0, x ◦ s = w, (1.1)

where F : V × V × Rm → V × Rm is a continuously differentiable nonlinear map.
Whenw = 0, theWCPwould reduce to themixed nonlinear complementarity problem
over symmetric cones which, for example, was studied by Yoshise [37]. Moreover,
when x ∈ K and s ∈ K, we have x ◦ s = 0 if and only if 〈x, s〉 = 0 (see, [10,
Proposition 6]). Hence, in (1.1) if we have w = 0, m = 0 and F(x, s, y) = f (x) − s
with f : V → V being a continuously differentiable nonlinear map, this WCP would
become the well-known symmetric cone complementarity problem (SCCP), which
finds (x, s) ∈ V × V such that

(SCCP) x ∈ K, s ∈ K, s = f (x), 〈x, s〉 = 0. (1.2)

So,WCP significantly extends the scope of general complementarity problems and can
model a wider class of problems arising from real applications more conveniently. In
addition, theflexibility ofWCPmodelmayalso lead tomore efficient numerical solvers
even the problem can be also formulated as a general complementarity problem, e.g.,
the Fisher market equilibrium problem [30]. Although WCP was proposed in general
Euclidean Jordan algebra setting, only the case of linear WCP over the nonnegative
orthant (LWCP) was studied in [30], which finds (x, s, y) ∈ Rn ×Rn ×Rm such that

(LWCP) x ∈ Rn+, s ∈ Rn+, Px + Qs + Ry = a, xs = w. (1.3)

Here, P ∈ R(n+m)×n, Q ∈ R(n+m)×n, R ∈ R(n+m)×m and a ∈ Rn+m are given
matrices and vector, w ∈ Rn+ is a given weight vector, and xs denotes the vector
with components xi si . In [30], Potra showed that the quadratic programming and
weighted centering problem, which generalizes the notion of linear programming and
the weighted centering problem proposed by Anstreicher [2], can be formulated as a
special LWCP. Two interior-point methods as well as their computational complexities
were also studied in [30]. Moreover, sufficient conditions for characterization of solu-
tions of LWCPwere given in [31] and a corrector–predictor interior-point method was
proposed for its numerical solution. Lately, Asadi et al. [1] introduced a full-Newton
step interior-point algorithm for solving the LWCP. When w = 0 in (1.1), Yoshise
discussed the trajectory of an interior point map in view of homeomorphisms of con-
tinuous maps and gave a homogeneous model to solve the problem [37]. However, to
the best of our knowledge, also as pointed out in [30], there are no existence results
and algorithms for the solution of WCP (1.1) in the general case.

On the other hand, there have been much interests in smoothing Newton-
type algorithms for solving optimization problems over symmetric cone, such as
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the symmetric cone programming (SCP) (e.g., [15,18,20]) and the SCCP (e.g.,
[13,14,17,19,21,22,24,27,35,36]). And more recently, smoothing Newton algorithm
has been proposed for solving LWCP, see [16,34]. The main idea of these classes
of smoothing Newton algorithms is to use a smoothing function to reformulate the
problem concerned as a system of smooth nonlinear equations H(z) = 0 and then
solve it by Newton’s method. To obtain local fast convergence, all these smoothing
Newton-type algorithms require the following Jacobian nonsingularity assumption:

All V ∈ ∂H(z∗) are nonsingular, (1.4)

where z∗ is any accumulation point of the iteration sequence generated by smooth-
ing Newton-type algorithms and ∂H stands for the Clarke’s generalized Jacobian [5].
However, this Jacobian nonsingularity assumption may not hold especially when the
solution set of WCP is not a singleton. Moreover, even with this Jacobian nonsingu-
larity assumption, many papers do not analyze whether an accumulation point exists
or not (e.g., [4,16,18,19,34]). To ensure such an accumulation point exist, smooth-
ing Newton-type algorithms usually require the boundedness of the solution set (e.g.,
[14,17,21,22,24,27,35]).

In this paper, we aim to design a globally convergent nonmonotone smoothing
Newton algorithm to solve WCP (1.1) in the general case and show its local fast
convergence without Jacobian nonsingularity assumption. Specifically, we introduce
a one-parametric class of smoothing functions which include the weight vector w.
Based on these functions,we reformulateWCP in (1.1) as a systemof smooth equations
H(z) = 0 (see, Sect. 3) and propose a smoothing Newton algorithm combined with
nonmonotone line search to solve it. Any accumulation point of the iterates generated
by this algorithm is a solution of H(z) = 0. Moreover, under assumptions which are
much weaker than the Jacobian nonsingularity assumption, we show that when the
solution set of the considered WCP is nonempty,

• the distance between the iteration sequence {zk} and the solution set Z∗ :=
{z|H(z) = 0} converges to zero locally superlinearly or quadratically;

• furthermore, the iteration sequence {zk} in fact converges to one solution z∗ ∈ Z∗
locally superlinearly or quadratically.

To the best of our knowledge, these convergence results for smoothing Newton-
type algorithms have not been studied in the literature, even in the simple case of
K = Rn+ and the weight vectorw = 0. Moreover, the iteration points of our algorithm
are not required to be interior points of the symmetric cone K in WCP. Hence, from
computational point of view, the new algorithm is much more flexible, easier to use
and often finds the solution more efficiently than interior-point methods proposed in
[30,31], which are confirmed by our numerical experiments.

The outline of this paper is as follows. In Sect. 2, we briefly recall the Euclidean
Jordan algebra. In Sect. 3, we introduce a one-parametric class of smoothing func-
tions including the weight vector w and reformulate WCP as a system of nonlinear
smooth equations. We propose and briefly discuss our nonmonotone smoothing New-
ton algorithm for solving WCP in Sect. 4. In Sect. 5, we analyze the global and local
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convergence properties of this algorithm. Numerical results are reported in Sect. 6,
and some conclusions are given in Sect. 7.

Throughout this paper, we use the following notations. Rn denotes the set of
all n dimensional real vectors, and Rn+ (respectively, Rn++) denotes the nonnega-
tive (respectively, positive) orthant of Rn . For any t ∈ R, let t+ = max{0, t} and
t− = min{0, t}. All vectors are column vectors, and for simplicity, the column vector

(uT1 , . . . , uTn )T is written as (u1, . . . , un), where ui is a column vector in V. For a
given set S ⊂ V, intS and convS denote the interior and convex hull of S, respectively,
and for any u ∈ V, dist(u, S) = inf

v∈S{‖u − v‖}, where ‖ · ‖ is the norm on V induced

by the inner product 〈·, ·〉. For any u, v ∈ K, we write u 
K v (respectively, u �K v)
if u − v ∈ K (respectively, u − v ∈ intK). We use I as the identity operator, i.e.,
I x = x for all x ∈ V. For a differentiable mapping G : V → V, we denote G ′(x) by
the Jacobian of G at x ∈ V. For any α, β > 0, α = O(β) (respectively, α = o(β))

means that lim supβ→0
α
β

< ∞(respectively, lim supβ→0
α
β

= 0).

2 Euclidean Jordan Algebra

In this section, we briefly recall some major properties of Euclidean Jordan algebra
which will be used in this paper. Details on the description of Euclidean Jordan algebra
can be found in [6].

A Euclidean Jordan algebra is a triple (V, 〈·, ·〉, ◦), where (V, 〈·, ·〉) is a finite-
dimensional inner product space over R and (x, y) �→ x ◦ y : V × V → V is a
bilinear mapping satisfying the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 := x ◦ x;
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V.

We assume that there is an element e ∈ V (called the unit element) such that x ◦ e =
e ◦ x = x for all x ∈ V.

For a given x ∈ V, the Lyapunov transformation is defined by Lx : V → V

by Lx y := x ◦ y, ∀y ∈ V, which is a symmetric operator in the sense that
〈Lx y, z〉 = 〈y,Lx z〉 for all y, z ∈ V. The operator Lx is positive definite if
〈u,Lxu〉 > 0 for all 0 �= u ∈ V. From [37, Proposition 2.1], we have that
intK = {x ∈ V : Lx is positive definite.}.

The symmetric coneK is a self-dual closed convex conewith nonempty interior intK
and homogeneous, i.e., for any two elements x, y ∈ intK, there exists an invertible
linear transformation : V → V such that (K) = K and (x) = y. By [6, Theorem
III.2.1], the symmetric cone K coincides with the set of squares {x2 : x ∈ V}.

For any x ∈ V, let m(x) := min{k : {e, x, . . . , xk} are linearly dependent}. Since
m(x) ≤ dimV where dimV denotes the dimension of V, the rank of V is well defined
by r := max{m(x) : x ∈ V}. An element c ∈ V is said to be idempotent if c2 = c. An
idempotent is said to be primitive if it is nonzero and cannot bewritten as the sumof two
other nonzero idempotents. A complete system of orthogonal idempotents is a finite set

{c1, . . . , cm}, where c2j = c j , ci ◦ c j = 0, ∀i �= j, i, j = 1, . . . ,m, and
m∑

i=1
ci = e.
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A complete system of orthogonal primitive idempotents is called a Jordan frame. We
have the following important spectral decomposition theorem.

Theorem 1 [6, Theorem III.1.2] Let (V, 〈·, ·〉, ◦) be a Euclidean Jordan algebra with
rank r . Then, for any x ∈ V, there exist a Jordan frame {c1, . . . , cr } and real numbers
λ1(x), . . . , λr (x) such that x =

r∑

i=1
λi (x)ci . The numbers λi (x)(i = 1, . . . , r), which

are uniquely determined by x, are called the eigenvalues of x.

Let x ∈ V and λ1(x), . . . , λr (x) be its eigenvalues. The trace of x is denoted by

Tr(x) :=
r∑

i=1
λi (x). For any x, y ∈ V, the inner product of x, y is 〈x, y〉 := Tr(x ◦ y)

and the norm on V induced by this inner product is ‖x‖ := √〈x, x〉 = √
Tr(x2).

For any x ∈ V with the spectral decomposition x =
r∑

i=1
λi (x)ci , we define

x+ :=
r∑

i=1

λi (x)+ci , x− :=
r∑

i=1

λi (x)−ci , |x | :=
r∑

i=1

|λi (x)|ci .

Since x ∈ K (x ∈ intK) if and only if λi (x) ≥ 0 (λi (x) > 0) for all i = 1, . . . , r and
t = t+ + t− and |t | = t+ − t− for any t ∈ R, we have

x+ ∈ K, −x− ∈ K, x = x+ + x−, |x | = x+ − x−.

Moreover, for any x ∈ K we define

x2 :=
r∑

i=1

λi (x)
2ci and

√
x :=

r∑

i=1

√
λi (x)ci .

Then, we have |x | = √
x2. More generally, for any real-valued function f : R → R,

we may define a function associated with the Euclidean Jordan algebra (V, 〈·, ·〉, ◦)

by

fV(x) :=
r∑

i=1

f (λi (x))ci .

This function fV is a Löwner operator and inherits many properties from f .

3 Basic Ideas of the Algorithm

3.1 Smoothing Functions forWCP

Since WCP contains the weight vector w ∈ K, the traditional complementarity
functions over the symmetric cone, such as the natural residual function and the
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Fischer–Burmeister function (see, [10,33]), cannot be used to carry on the equivalent
reformulation. In this subsection, we introduce a one-parametric class of complemen-
tarity functions φ : V × V → V, including the weight vector w ∈ K, defined by

φ(x, s) = x + s −
√
x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w, ∀(x, s) ∈ V × V, (3.1)

where τ ∈ [0, 4) is a constant. Note that for any τ ∈ [0, 4) and w ∈ K, we have

x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w

= [x + (τ/2 − 1)s]2 + τ(1 − τ/4)s2 + (4 − τ)w ∈ K. (3.2)

Hence, the function φ(x, s) given in (3.1) is well defined. In what follows, we show
that the function φ is a class of complementarity functions for WCP.

Lemma 1 For any u, v ∈ V, (i) if u 
K 0 and u2 
K v2, then u 
K |v| and u 
K v;
(ii) if u 
K 0 and u2 �K v2, then u �K |v| and u �K v.

Proof The results can be directly obtained from [10, Proposition 8]. ��
Theorem 2 Let φ be defined by (3.1) with τ ∈ [0, 4). Then,

φ(x, s) = 0 ⇐⇒ x ∈ K, s ∈ K, x ◦ s = w. (3.3)

Proof We first suppose that x and s satisfy φ(x, s) = 0. Then, we have

x + s =
√
x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w. (3.4)

Squaring the two sides of (3.4) gives

x2 + s2 + 2x ◦ s = x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w,

which together with τ ∈ [0, 4) yields x ◦ s = w. By substituting x ◦ s = w into (3.4),
we have x + s = √

x2 + s2 + 2w. Since x2 
K 0, s2 
K 0 and w 
K 0, we have
c := x + s = √

x2 + s2 + 2w 
K 0, c2 
K x2 and c2 
K s2. Since c 
K 0, it
follows from Lemma 1 that c 
K x and c 
K s. By noticing that c = x + s, we have
x = c − s 
K 0 and s = c − x 
K 0, i.e., x ∈ K and s ∈ K.

Conversely, we suppose that x ∈ K, s ∈ K, x ◦ s = w. Then, x + s ∈ K and

√
x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w =

√
(x + s)2 = x + s,

which implies that φ(x, s) = 0. This completes the proof. ��
Note that the complementarity function φ in (3.1) is not continuously differentiable

everywhere. Hence, to design our algorithm, we introduce a smoothing parameterμ ∈
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R+ intoφ and get a one-parametric class of smoothing functionsψ : R+×V×V → V

as follows:

ψ(μ, x, s) = x + s −
√
x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w + 4μt e, (3.5)

where t ∈ [1, 2] is a constant.

Theorem 3 Letψ be defined by (3.5)with τ ∈ [0, 4) and t ∈ [1, 2]. Then, the following
results hold.

(i) For any (x, s) ∈ V × V, lim
μ→0

ψ(μ, x, s) = ψ(0, x, s) = φ(x, s) and

ψ(0, x, s) = 0 ⇐⇒ x ∈ K, s ∈ K, x ◦ s = w. (3.6)

(ii) Let d = x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w with its spectral decomposition
given by d = ∑r

i=1 λi (d)ci , where {c1, ..., cr } is a Jordan frame and the numbers
λ1(d), ..., λr (d) are the eigenvalues of d uniquely determined by d. Let u, v ∈ V

and h ∈ R. Then,ψ is continuously differentiable at any (μ, x, s) ∈ R++×V×V

with

ψ ′
μ(μ, x, s)h = −

r∑

i=1

2tμt−1h
√

λi (d) + 4μt
ci , (3.7)

ψ ′
x (μ, x, s)u = u − L−1

c(μ,x,s)[(x + (τ/2 − 1)s) ◦ u], (3.8)

ψ ′
s(μ, x, s)v = v − L−1

c(μ,x,s)[(s + (τ/2 − 1)x) ◦ v], (3.9)

where

c(μ, x, s) =
√
x2 + s2 + (τ − 2)x ◦ s + (4 − τ)w + 4μt e = √

d + 4μt e.
(3.10)

Proof The result (i) obviously holds by Theorem 2. The proof of (3.8) and (3.9) can
be obtained by slight modification of the proof of [29, Lemma 4.1]. By (3.2), we have
d ∈ K and hence λi (d) ≥ 0 for all i = 1, ..., r . Using this fact, we can prove (3.7)
similarly as the proof of [13, Lemma 3.1]. ��

3.2 The Reformulation ofWCP

Let z = (μ, x, s, y) ∈ R × V × V × Rm . For WCP (1.1), we define the function
H(z) : R × V × V × Rm → R × V × Rm × V as

H(z) :=
⎛

⎝
μ

F(x, s, y)
ψ(μ, x, s)

⎞

⎠ , (3.11)
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where ψ is the smoothing function given in (3.5). Then, from (3.6) it holds that

H(z) = 0 ⇐⇒ μ = 0 and (x, s, y) is a solution of WCP (1.1). (3.12)

Thus, for solvingWCP (1.1), one can apply Newton-type methods to solve the system
of nonlinear equations H(z) = 0.

ByTheorem3 (ii),H(z) is continuously differentiable at any z ∈ R++×V×V×Rm

and its Jacobian is

H′(z) =
⎡

⎣
1 0 0 0
0 F ′

x (x, s, y) F ′
s(x, s, y) F ′

y(x, s, y)
ψ ′

μ(μ, x, s) ψ ′
x (μ, x, s) ψ ′

s(μ, x, s) 0

⎤

⎦ . (3.13)

In the rest of the paper,we assume that F ′(x, s, y) has the following rank andmonotone
property.

Assumption 3.1 Suppose that rank F ′
y(x, s, y) = m and we have 〈Δx,Δs〉 ≥ 0, for

any (Δx,Δs,Δy) ∈ V × V × Rm with F ′(x, s, y)(Δx,Δs,Δy) = 0.
For Assumption 3.1, we have the following remarks.

(i) Assumption 3.1 is very standard and has been often used to analyze smoothing
Newton-type algorithms for the second-order cone complementarity problem (e.g.,
[4,9,26]), the LWCP in (1.3) (e.g., [16,34]) and the interior-point methods for
solving LWCP [30].

(ii) For SCCP in (1.2), Assumption 3.1 in fact reduces to require that f is monotone,
i.e., 〈 f (u) − f (v), u − v〉 ≥ 0 for all u, v ∈ V, which has been used in [13,14,17,
19,21,24,27,35,36].

Lemma 2 Let a, b ∈ V with a �K 0, b �K 0 and a ◦ b �K 0. Then, there exists a
constant θ > 0 such that for all u, v ∈ V satisfying 〈u, v〉 ≥ 0, we have

‖Lau + Lbv‖ ≥ θ(‖u‖ + ‖v‖). (3.14)

Proof Since b �K 0, Lb is invertible. So, for all u, v ∈ V satisfying 〈u, v〉 ≥ 0, set
ũ := L−1

b u.
Then, we have

‖u‖‖L−1
b Lau + v‖ ≥ 〈u,L−1

b Lau + v〉
≥ 〈u,L−1

b Lau〉
= 〈ũ,LaLbũ〉
= 〈ũ, (LaLb + LbLa)ũ〉/2. (3.15)

Since a �K 0, b �K 0 and a ◦ b �K 0, it follows from [37, Lemma 2.6 (v)] that
LaLb +LbLa is positive definite. Let ξ be the minimal eigenvalue of LaLb +LbLa .
Then, ξ > 0 and

〈ũ, (LaLb + LbLa)ũ〉 ≥ ξ‖ũ‖2. (3.16)
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By (3.15) and (3.16), we have

‖u‖‖L−1
b Lau + v‖ ≥ ξ‖ũ‖2

2
= ξ‖L−1

b u‖2
2

≥ ξ

2‖Lb‖2 ‖u‖2,

which yields

‖L−1
b Lau + v‖ ≥ ξ

2‖Lb‖2 ‖u‖. (3.17)

Notice that (3.17) also holds when u = 0. Since

‖L−1
b Lau + v‖ = ‖L−1

b (Lau + Lbv)‖ ≤ ‖L−1
b ‖‖Lau + Lbv‖,

we have from (3.17) that

‖Lau + Lbv‖ ≥ ξ

2‖L−1
b ‖‖Lb‖2

‖u‖. (3.18)

Similarly, we can also show

‖Lau + Lbv‖ ≥ ξ

2‖L−1
a ‖‖La‖2

‖v‖. (3.19)

Then, (3.14) follows from (3.18) and (3.19) with

θ = min
{ ξ

4‖L−1
b ‖‖Lb‖2

,
ξ

4‖L−1
a ‖‖La‖2

}
.

This completes the proof. ��
Theorem 4 Let H′(z) be defined by (3.13). If Assumption 3.1 holds, then H′(z) is
nonsingular at any z = (μ, x, s, y) ∈ R++ × V × V × Rm .

Proof For any (μ, x, s, y) ∈ R++ × V × V × Rm , by the expression of H′(z), it
suffices to prove that the following system

F ′
x (x, s, y)Δx + F ′

s(x, s, y)Δs + F ′
y(x, s, y)Δy = 0, (3.20)

and
ψ ′
x (μ, x, s)Δx + ψ ′

s(μ, x, s)Δs = 0, (3.21)

has only zero solution. By (3.8), (3.9) and (3.21), we have

[
I − L−1

c(μ,x,s)Lx+(τ/2−1)s
]
Δx + [

I − L−1
c(μ,x,s)Ls+(τ/2−1)x

]
Δs = 0,

which is equivalent to

Lc(μ,x,s)−[x+(τ/2−1)s]Δx + Lc(μ,x,s)−[s+(τ/2−1)x]Δs = 0. (3.22)
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From (3.2) and (3.10), we have

c(μ, x, s) =
√

[x + (τ/2 − 1)s]2 + τ(1 − τ/4)s2 + (4 − τ)w + 4μt e

=
√

[s + (τ/2 − 1)x]2 + τ(1 − τ/4)x2 + (4 − τ)w + 4μt e.

So, it follows from τ ∈ [0, 4), w ∈ K and μ > 0 that c(μ, x, s) �K 0 and

c(μ, x, s)2 �K [x + (τ/2 − 1)s]2, c(μ, x, s)2 �K [s + (τ/2 − 1)x]2,

which together with (ii) in Lemma 1 gives

c(μ, x, s) − |x + (τ/2 − 1)s| �K 0, c(μ, x, s) − |s + (τ/2 − 1)x | �K 0,

and hence

c(μ, x, s) − [x + (τ/2 − 1)s] �K 0, c(μ, x, s) − [s + (τ/2 − 1)x] �K 0. (3.23)

In addition, by τ ∈ [0, 4), w ∈ K and μ > 0, it holds that

{
c(μ, x, s) − [x + (τ/2 − 1)s]} ◦ {c(μ, x, s) − [s + (τ/2 − 1)x]}

= c(μ, x, s)2 − τ/2c(μ, x, s) ◦ (x + s) + [x + (τ/2 − 1)s] ◦ [s + (τ/2 − 1)x]
= τ/4[c(μ, x, s) − (x + s)]2 + (2 − τ/2)2w + (4 − τ)μt e �K 0. (3.24)

Moreover, from Assumption 3.1 and (3.20) we have

〈�x,�s〉 ≥ 0.

Hence, by Lemma 2, we can obtain from (3.23) and ( 3.24) that

‖Lc(μ,x,s)−[x+(τ/2−1)s]Δx + Lc(μ,x,s)−[s+(τ/2−1)x]Δs‖ ≥ ξ(‖Δx‖ + ‖Δs‖),

where ξ > 0 is a constant. This together with (3.22) implies Δx = 0 and
Δs = 0. So, by (3.20), we have F ′

y(x, s, y)Δy = 0, which and the assumption
on rank F ′

y(x, s, y) = m give Δy = 0. We complete the proof. ��

4 The Algorithm

LetH(z) be given in (3.11) and define themerit functionM : R×V×V×Rm → R+
by

M(z) = ‖H(z)‖2. (4.1)

We now describe our algorithm to solve H(z) = 0 by minimizing the merit function
M(z).
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Algorithm 4.1 (A Nonmonotone Smoothing Newton Algorithm (NSNA) for WCP)

Step 1: Choose δ ∈ (0, 1), σ ∈ (0, 1/2) and z0 := (μ0, x0, s0, y0) ∈ R++ × V ×
V × Rm . Let C0 := M(z0). Choose γ ∈ (0, 1) such that γ ≤ μ0. Set k := 0.

Step 2: If ‖H(zk)‖ = 0, then stop. Else, compute

βk := γ min{1, Ck}. (4.2)

Step 3: Compute the search direction Δzk = (Δμk,Δxk,Δsk,Δyk) ∈ R×V×V×
Rm by solving the perturbed Newton system:

H′(zk)Δzk = −H(zk) + βkh, (4.3)

where h := (1, 0, 0, 0) ∈ R × V × Rm × V.
Step 4: Let αk be the maximum of the values 1, δ, δ2, ... such that

M(zk + αkΔzk) ≤ [1 − 2σ(1 − γ )αk]Ck . (4.4)

Step 5: Set zk+1 := zk + αkΔzk . Compute M(zk+1) = ‖H(zk+1)‖2 and set

Ck+1 := (Ck + 1)M(zk+1)

M(zk+1) + 1
. (4.5)

Set k := k + 1. Go to Step 2.

Motivated from the techniques given in [12], the reference value Ck in the line
search of NSNA is updated in an average way, which could not only ensure global
convergence but also improve practical performance of NSNA. The following theorem
shows NSNA, especially the Newton system (4.3) and the nonmonotone line search
(4.4), is well defined.

Theorem 5 If Assumption 3.1 holds, Algorithm 4.1 is well defined and its generated
sequence {zk = (μk, xk, sk, yk)} satisfies μk > 0 and M(zk) ≤ Ck for all k ≥ 0.

Proof Suppose that zk ∈ R++×V×V×Rm andM(zk) ≤ Ck for some k. ByTheorem
4,H′(zk) is nonsingular. So, Step 3 is well defined at the kth iteration. Moreover, from
(4.3) we have

M′(zk)Δzk = 2H(zk)TH′(zk)Δzk = −2M(zk) + 2μkβk . (4.6)

For any α ∈ (0, 1], we denote

R(α) := M(zk + αΔzk) − M(zk) − αM′(zk)Δzk . (4.7)

Since M(zk) ≤ Ck, by (3.11) and (4.1) we have μk ≤ √Ck . From (4.2), it holds that
βk ≤ γ

√Ck because min{1, a} ≤ √
a for any a ≥ 0. Using these results, we can
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obtain from (4.6) and (4.7) that for any α ∈ (0, 1]

M(zk + αΔzk) = M(zk) + αM′(zk)Δzk + R(α)

= (1 − 2α)M(zk) + 2αμkβk + R(α)

≤ (1 − 2α)Ck + 2αγ Ck + R(α)

= [1 − 2(1 − γ )α]Ck + R(α). (4.8)

Since M is continuously differentiable at zk ∈ R++ × V × V × Rm , we have
R(α) = o(α). This together with (4.8) implies that the line search (4.4) is well defined.
So, we can find a step-size αk ∈ (0, 1] in Step 4 and get the (k + 1)th iteration
zk+1 = zk + αkΔzk in Step 5. Now we prove zk+1 ∈ R++ × V × V × Rm and
M(zk+1) ≤ Ck+1. Since μk > 0, we have Ck ≥ M(zk) ≥ μ2

k > 0 and hence βk > 0.
By the first equation of (4.3), we get Δμk = −μk + βk . Thus,

μk+1 = μk + αkΔμk = (1 − αk)μk + αkβk > 0. (4.9)

This proves zk+1 ∈ R++ × V × V × Rm . Moreover, by Steps 4 and 5 we have
M(zk+1) ≤ Ck , which together with (4.5) implies that Ck+1 ≥ M(zk+1). So, we
can conclude that if zk ∈ R++ × V × V × Rm and M(zk) ≤ Ck , then zk+1 can be
generated by Algorithm 4.1 with zk+1 ∈ R++ ×V×V×Rm andM(zk+1) ≤ Ck+1.
This together with z0 ∈ R++ × V × V × Rm and M(z0) = C0 gives the desired
result. ��

5 Convergence Analysis

5.1 Global Convergence

Lemma 3 Suppose that Assumption 3.1 holds. Let {zk = (μk, xk, sk, yk)} be the
iteration sequence generated by Algorithm 4.1. Then, Ck ≥ Ck+1, μk ≥ βk and
μk ≥ μk+1 for all k ≥ 0.

Proof By Steps 4 and 5, we have M(zk+1) ≤ Ck for all k ≥ 0. Then, it follows from
(4.5) that for all k ≥ 0

Ck+1 = CkM(zk+1) + M(zk+1)

M(zk+1) + 1
≤ CkM(zk+1) + Ck

M(zk+1) + 1
= Ck .

Moreover, by Step 1 and (4.2), μ0 ≥ γ ≥ γ min{1, C0} = β0. Suppose that μk ≥ βk

for some k. Then, by (4.9) we have

μk+1 ≥ (1 − αk)βk + αkβk = βk = γ min{1, Ck} ≥ γ min{1, Ck+1} = βk+1.

Thus, μk ≥ βk for all k ≥ 0. Using this result, we can further obtain from (4.9) that

μk+1 ≤ (1 − αk)μk + αkμk = μk,
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for all k ≥ 0. ��
Based on Lemma 3, we have the following global convergence theorem.

Theorem 6 Suppose that Assumption 3.1 holds. Let {zk = (μk, xk, sk, yk)} be the
iteration sequence generated by Algorithm 4.1. If there exists an accumulation point
of {zk}, we have

lim
k→∞ ‖H(zk)‖ = 0,

and at any accumulation point z∗, we have H(z∗) = 0.

Proof Let z∗ be any accumulation point and there exists a subsequence, still denoted as
{zk}, converging to z∗. From Lemma 3, {Ck} is monotonically decreasing, and hence,
it is convergent. So, there exists C∗ ≥ 0 such that lim

k→∞ Ck = C∗. If C∗ = 0, then

lim
k→∞ ‖H(zk)‖ = 0, since M(zk) = ‖H(zk)‖2 ≤ Ck for all k ≥ 0. Then, from the

continuity of H(z) we have H(z∗) = 0. Now we suppose that C∗ > 0 and derive a
contradiction. By (4.5) we have

lim
k→∞M(zk+1) = lim

k→∞

( Ck+1

1 + Ck − Ck+1

)

= C∗ > 0. (5.1)

From Steps 4 and 5, it holds that

M(zk+1) ≤ [1 − 2σ(1 − γ )αk]Ck, (5.2)

which together with (5.1) implies that lim
k→∞ αk = 0. Let α̂k := αk/δ. Then, for all k

sufficiently large, α̂k does not satisfy the search criterion (4.4), i.e.,

M(zk + α̂kΔzk) > [1 − 2σ(1 − γ )α̂k]Ck ≥ M(zk) − 2σ(1 − γ )α̂kCk,

where the second inequality follows fromM(zk) ≤ Ck for all k ≥ 0. Thus,

M(zk + α̂kΔzk) − M(zk)

α̂k
≥ −2σ(1 − γ )Ck . (5.3)

By Lemma 3 and (4.2), we have

μ∗ = lim
k→∞ μk ≥ lim

k→∞ βk = β∗ := γ min{1, C∗} > 0.

Thus, M is continuously differentiable at z∗. So, by letting k → ∞ in (5.3) we have

2H(z∗)TH′(z∗)Δz∗ ≥ −2σ(1 − γ )C∗, (5.4)
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where Δz∗ is the solution ofH′(z∗)Δz∗ = −H(z∗) + β∗h. In addition, by (4.6),

H(z∗)TH′(z∗)Δz∗ = −M(z∗) + μ∗β∗

= −M(z∗) + μ∗γ min{1, C∗}
≤ −(1 − γ )C∗, (5.5)

where the inequality holds since M(z∗) ≤ C∗, μ∗ ≤ ‖H(z∗)‖ ≤ √C∗ and
min{1, C∗} ≤ √C∗. By combining (5.4) and (5.5), we have σ(1− γ )C∗ ≥ (1− γ )C∗,
which together with C∗ > 0 implies that σ(1 − γ ) ≥ 1 − γ . This contradicts the fact
that σ ∈ (0, 1/2) and γ ∈ (0, 1). Thus, C∗ = 0 and H(z∗) = 0. ��

By Theorem 5 and Lemma 3, we have M(zk) ≤ Ck ≤ C0 = M(z0) for all k ≥ 0.
Hence, if the level set L(z0) := {z ∈ R×V×V×Rm | M(z) ≤ M(z0)} is bounded,
we will have lim

k→∞ ‖H(zk)‖ = 0.

5.2 Local Superlinear and Quadratic Convergence

In this subsection, we analyze the local convergence properties of NSNA. For H(z)
given by (3.11), let Z∗ be the solution set of H(z) = 0, i.e.,

Z∗ := {z = (0, x, s, y) ∈ R × V × V × Rm | H(z) = 0}. (5.6)

Let S∗ be the solution set of WCP (1.1), i.e.,

S∗ := {(x, s, y) ∈ V × V × Rm | x ∈ K, s ∈ K, F(x, s, y) = 0, x ◦ s = w}.

Then, by (3.12) we have

z = (0, x, s, y) ∈ Z∗ ⇐⇒ (x, s, y) ∈ S∗.

Thus, Z∗is nonempty if and only if S∗ is nonempty.
Let {zk = (μk, xk, sk, yk)} be the iteration sequence generated by Algorithm 4.1.

For analyzing the local convergence rate of NSNA, we make the following assump-
tions.

Assumption 5.1 There exist constants C > 0 and d ∈ [0, 1/2) such that

‖H′(zk)−1‖ ≤ C

μd
k

,

for all k sufficiently large.

For Assumption 5.1, we have the following remarks.
(i) To obtain local fast convergence, many smoothing-type algorithms require that
{‖H′(zk)−1‖} is uniformlybounded (e.g., [3,38]) or the nonsingular Jacobian condition
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(1.4), while Assumption 5.1 allows {‖H′(zk)−1‖} to be unboundedwhen d ∈ (0, 1/2).
In what follows, we show NSNA has local quadratic convergence if Assumption 5.1
holds with d = 0, i.e., {‖H′(zk)−1‖} is uniformly bounded, but it will still has local
superlinear convergence when Assumption 5.1 holds with d ∈ (0, 1/2).
(ii) As an example, Assumption 5.1 holds for the following linear weighted comple-
mentarity problem:

x ∈ K, s ∈ K, s = Mx + a, xs = w, (5.7)

where K = Rn+, M ∈ Rn×n is a positive definite matrix, a ∈ Rn and w ∈ Rn+ is
the weight vector. This problem is a special case of LWCP (1.3) with P = M, Q =
−I , R = 0. We give the proof in ‘Appendix.” In fact, with more complicated proof,
we can actually showAssumption 5.1 holds for (5.7) withK being the general second-
order cone.

Assumption 5.2 lim
k→∞ ‖H(zk)‖ = 0 and there exists a constant η > 0 such that

‖H(zk)‖ ≥ ηdist(zk,Z∗), (5.8)

for all ‖H(zk)‖ sufficiently small.

Condition (5.8) is a type of local error bound condition. Local error bound condi-
tions and its applications were proposed and analyzed in [23,28], which are in general
weaker than the nonsingularity assumption on the Jacobian of a nonlinear system of
equations at its solution set. Local error bound conditions have been recently used
extensively to study local convergence behaviors of Levenberg–Marquardt methods
for solving nonlinear system of equationswhen the Jacobian is singular [7,8]. Assump-
tion 5.2 also assumes the residue ‖H(zk)‖ goes to zero as k → ∞, which byTheorem6
is ensured if there is one accumulation point of {zk}. Under Assumption 5.1, we now
give an other condition of ensuring ‖H(zk)‖ goes to zero, which could be satisfied for
unbounded solution set.

Theorem 7 Let {zk = (μk, xk, sk, yk)} be the iteration sequence generated by Algo-
rithm 4.1. If Assumption 5.1 holds and for any 0 < θ < μ0, M′(·) is Lipschitz
continuous on the set

Θ := {(μ, x, s, y) ∈ R++ × V × V × Rm | μ ≥ θ, ‖H(z)‖ ≤ 2‖H(z0)‖}, (5.9)

we have
lim
k→∞ ‖H(zk)‖ = 0. (5.10)

Proof By Lemma 3, {μk} and {Ck} are monotonically decreasing. Hence, there exist
μ∗ ≥ 0 and C∗ ≥ 0 such that lim

k→∞ μk = μ∗ and lim
k→∞ Ck = C∗. Moreover, by

Lemma 3 and (4.2), we have μk ≥ βk = γ min{1, Ck} for all k ≥ 0. Then, if μ∗ = 0,
we have lim

k→∞ Ck = 0, which implies (5.10). Hence, to complete the proof, we only

need to show μ∗ = 0.
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In the following, assuming μ∗ > 0, we derive a contradiction. Since μk ≥ μ∗ for
all k, it follows from Assumption 5.1 that

‖H′(zk)−1‖ ≤ C

μd
k

≤ C

(μ∗)d
,

for all k sufficiently large. Hence, by ‖H(zk)‖ ≤ ‖H(z0)‖ and βk ≤ γ , we have

‖Δzk‖ ≤ ‖H′(zk)−1‖‖−H(zk) + βkh‖ ≤ C

(μ∗)d
(‖H(z0)‖ + γ ) (5.11)

for all k sufficiently large. Now, since μ2
k ≤ M(zk) ≤ Ck for all k, we have C∗ =

lim
k→∞ Ck ≥ lim

k→∞ μ2
k = (μ∗)2 > 0. Then, it follows from (5.1), (5.2) and the same

arguments as those in the proof of Theorem 6 that lim
k→∞ α̂k = 0 and

M(zk + α̂kΔzk) > [1 − 2σ(1 − γ )α̂k]Ck, (5.12)

for all k sufficiently large, where α̂k = αk/δ. So, by (5.11), we have

lim
k→∞ α̂k‖Δzk‖ = 0. (5.13)

By (5.9), M′(·) is Lipschitz continuous on

{(μ, x, s, y) ∈ R++ × V × V × Rm | μ ≥ μ∗/2, ‖H(z)‖ ≤ 2‖H(z0)‖}

with a Lipschitz constant L > 0. So, we have from (5.13), μk ≥ μ∗ > 0 and
‖H(zk)‖ ≤ ‖H(z0)‖ thatM′(·) is Lipschitz continuous on the line segment connect-
ing zk to zk + α̂kΔzk for all sufficiently large k. Therefore, we have

∣
∣
∣M(zk + α̂kΔzk) − M(zk) − α̂kM′(zk)Δzk

∣
∣
∣ ≤ L

2
(α̂k‖Δzk‖)2 (5.14)

for all k sufficiently large. Then, we have

M(zk + α̂kΔzk) ≤ M(zk) + α̂kM′(zk)Δzk + L

2
(α̂k‖Δzk‖)2

= (1 − 2α̂k)M(zk) + 2α̂kμkβk + L

2
(α̂k‖Δzk‖)2

≤ (1 − 2α̂k)Ck + 2α̂kγ Ck + L

2
(α̂k‖Δzk‖)2

= [1 − 2(1 − γ )α̂k]Ck + L

2
(α̂k‖Δzk‖)2, (5.15)
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where the first equality holds by (4.6) and the second inequality uses the fact that
M(zk) ≤ Ck , μk ≤ √Ck and βk ≤ γ

√Ck for all k. By (5.12) and (5.15), we get

2(1 − σ)(1 − γ )Ck ≤ Lα̂k‖Δzk‖2
2

,

for all k sufficiently large. Taking k → ∞ in the above equation, it follows from
(5.11), (5.13) and (1 − σ)(1 − γ ) > 0 that C∗ = 0, which contradicts with C∗ > 0.
This completes our proof. ��

Suppose that the set Z∗ defined by (5.6) is nonempty. Since Z∗ is a closed set, for
any z = (μ, x, s, y), let z̄ ∈ Z∗ be one vector satisfying

‖z − z̄‖ = dist(z,Z∗). (5.16)

For local fast convergence, we also need the local strong semismoothness of H(·).

Assumption 5.3 H(·) is strongly semismooth with respect to the set Z∗, that is, there
exist constants M > 0 and L > 0 such that

‖H(z)‖ = ‖H(z) − H(z̄)‖ ≤ M‖z − z̄‖ (5.17)

and

‖H(z) − H′(z)(z − z̄)‖ ≤ L

2
‖z − z̄‖2, (5.18)

whenever ‖z − z̄‖ = dist(z,Z∗) is sufficiently small.

Local strong semismoothness of H(·) is indeed a generalization of the standard
definition of strongly semismooth of a function at one point. When Z∗ = {z∗} is
a singleton, Assumption 5.3 will be simply reduced to the assumption that H(·) is
strongly semismooth at z∗. One may refer [32] for the standard definition of strongly
semismoothness of a locally Lipschitz continuous function.

We now discuss the local superlinear and quadratic convergence properties of Algo-
rithm 4.1.

Theorem 8 Let {zk = (μk, xk, sk, yk)} be the iteration sequence generated by Algo-
rithm 4.1. Suppose Z∗ is nonempty and Assumptions 3.1, 5.1, 5.2 and 5.3 hold. Then,
for all sufficiently large k, we have

zk+1 = zk + Δzk, (5.19)

and
dist(zk+1,Z∗) = O(dist(zk,Z∗)2−2d), (5.20)

where d ∈ [0, 1/2).
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Proof Assumption 5.2 implies that lim
k→∞ dist(zk,Z∗) = lim

k→∞ ‖zk − z̄k‖ = 0. Since

{Ck} is monotonically decreasing, it is convergent. So, from (4.5) and Assumption 5.2
we have lim

k→∞ Ck = 0. Thus, by (4.1), (4.2) and (4.5), for all sufficiently large k,

βk = γ Ck = γ (Ck−1 + 1)M(zk)

M(zk) + 1
≤ γ (C0 + 1)‖H(zk)‖2. (5.21)

Hence, by (5.17), for all sufficiently large k,

βk ≤ γ (C0 + 1)‖H(zk) − H(z̄k)‖2 ≤ γ (C0 + 1)M2‖zk − z̄k‖2. (5.22)

Then, it follows from (4.3), (5.22), (5.18) and Assumption 5.1 that for all sufficiently
large k,

‖zk + Δzk − z̄k‖ = ‖zk + H′(zk)−1[−H(zk) + βkh] − z̄k‖
≤ ‖H′(zk)−1‖

[
‖H(zk) − H′(zk)(zk − z̄k)‖ + βk

]

≤ C̄

μd
k

‖zk − z̄k‖2, (5.23)

where d ∈ [0, 1/2) and C̄ := C(L/2+γ (C0 +1)M2). By Lemma 3, (5.21), Theorem
5 and Assumption 5.2, for all sufficiently large k,

μk ≥ βk = γ Ck ≥ γM(zk) = γ ‖H(zk)‖2
≥ γ η2dist(zk,Z∗)2 = γ η2‖zk − z̄k‖2.

So, for all d ∈ [0, 1/2) and sufficiently large k,

1

μd
k

≤ 1

γ dη2d‖zk − z̄k‖2d . (5.24)

Hence, by combining (5.23) and (5.24), we have

‖zk + Δzk − z̄k‖ ≤ C̄

γ dη2d
‖zk − z̄k‖2−2d . (5.25)

So, dist(zk + Δzk,Z∗) is sufficiently small when k is sufficiently large. Hence, it
follows (5.17) that for any d ∈ [0, 1/2) and sufficiently large k,

‖H(zk + Δzk)‖ ≤ Mdist(zk + Δzk,Z∗) ≤ M‖zk + Δzk − z̄k‖. (5.26)

Moreover, by Assumption 5.2, for any d ∈ [0, 1/2) and sufficiently large k,

‖H(zk)‖2−2d ≥ η2−2ddist(zk,Z∗)2−2d = η2−2d‖zk − z̄k‖2−2d . (5.27)
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Then, we have from (5.25)–(5.27) that for any d ∈ [0, 1/2) and sufficiently large k,

‖H(zk + Δzk)‖ ≤ C̃‖H(zk)‖2−2d , (5.28)

where C̃ := MC̄/(γ dη2), which implies

lim
k→∞

M(zk + Δzk)

M(zk)
= lim

k→∞
‖H(zk + Δzk)‖2

‖H(zk)‖2 = 0.

Hence, for all sufficiently large k, αk = 1 satisfies

M(zk + αkΔzk) ≤ [1 − 2σ(1 − γ )αk]M(zk) ≤ [1 − 2σ(1 − γ )αk]Ck .

Therefore, for all sufficiently large k,

zk+1 = zk + Δzk .

So, by (5.25), for all d ∈ [0, 1/2) and sufficiently large k, we have

‖zk+1 − z̄k‖ ≤ C̄

γ dη2d
‖zk − z̄k‖2−2d ,

which implies

dist(zk+1,Z∗) ≤ ‖zk+1 − z̄k‖ = O(dist(zk,Z∗)2−2d).

Thus, the proof is completed. ��
Now, underAssumptions 5.1, 5.2 and 5.3,we show that the iteration sequence {zk } is

bounded and it converges to some point z∗ ∈ Z∗ locally superlinearly or quadratically.

Theorem 9 Let {zk = (μk, xk, sk, yk)} be the iteration sequence generated by Algo-
rithm 4.1. Suppose the solution set Z∗ is nonempty and Assumptions 3.1, 5.1, 5.2
and 5.3 hold. Then, we have {zk} is bounded and converges to some point z∗ ∈ Z∗.
Moreover, for all sufficiently large k, we have

‖zk+1 − z∗‖ = O(‖zk − z∗‖2−2d), (5.29)

where d ∈ [0, 1/2).
Proof By (5.25), for all d ∈ [0, 1/2) and sufficiently large k,

‖Δzk‖ ≤ ‖zk + Δzk − z̄k‖ + ‖zk − z̄k‖
= O(‖zk − z̄k‖2−2d) + ‖zk − z̄k‖
= O(‖zk − z̄k‖) = O(dist(zk,Z∗)). (5.30)
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Moreover, by (5.20), for all sufficiently large k,

dist(zk+1,Z∗)
dist(zk,Z∗)

= O(dist(zk,Z∗)1−2d), (5.31)

where d ∈ [0, 1/2). Since lim
k→∞ dist(zk,Z∗)1−2d = 0 for d ∈ [0, 1/2) , we have from

(5.31) that
∞∑

k=1

dist(zk,Z∗) < ∞, (5.32)

which together with (5.30) gives

∞∑

k=1

‖Δzk‖ < ∞. (5.33)

Then, it follows from (5.19) that {zk} is a Cauchy sequence. Hence, there exists a z∗
such that lim

k→∞ zk = z∗. And, by Theorem 6, we have z∗ ∈ Z∗.
Now, by (5.19) and (5.31), for all sufficiently large k, we have

dist(zk,Z∗) ≤ ‖zk − z̄k+1‖ = ‖zk+1 − z̄k+1 − Δzk‖
≤ dist(zk+1,Z∗) + ‖Δzk‖
≤ 1

2
dist(zk,Z∗) + ‖Δzk‖,

which implies
dist(zk,Z∗) ≤ 2‖Δzk‖. (5.34)

Again, by (5.30) and (5.31), for all sufficiently large k, we have

‖Δzk+1‖ ≤ 1

4
dist(zk,Z∗).

This together with (5.34) gives

‖Δzk+1‖ ≤ 1

2
‖Δzk‖ (5.35)

for all sufficiently large k. So, when k is sufficiently large, (5.35) gives

‖zk+1 − z∗‖ = ‖
∞∑

j=k+1

Δz j‖ ≤
∞∑

j=k+1

‖Δz j‖ ≤ 2‖Δzk+1‖.

This together with (5.20) and (5.30) gives

lim
k→∞

‖zk+1 − z∗‖
‖zk − z∗‖2−2d ≤ lim

k→∞
2‖Δzk+1‖

dist(zk,Z∗)2−2d < ∞.
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Hence, (5.29) holds. ��
We can see that if Assumption 5.1 holds for d = 0, i.e., {‖H′(zk)−1‖} is uniformly

bounded for all sufficiently large k, then under the conditions of Theorems 8 and 9,
NSNA has local quadratic convergence. In addition, from Assumption 5.2, we have
lim
k→∞ ‖H(zk)‖ = 0, which implies lim

k→∞ μk = 0. Hence, when d ∈ (0, 1/2), Assump-

tion 5.1 does allow ‖H′(zk)−1‖ to grow up to infinity but no faster than O(1/μd).
However, in this case, NSNA would still has local superlinear convergence.

InAssumptions 5.2 and 5.3, we assume that {‖H(zk)‖} converges to zero as k → ∞
andH(z) is strongly semismooth with respect to the setZ∗. In what follows, we show
that under proper conditions these assumptions hold forLWCP (1.3).Here,we consider
the smoothing function

ψc(μ, a, b) := a + b −
√
a2 + b2 + 2c + 4μ2, ∀ (μ, a, b) ∈ R3, (5.36)

which corresponds to (3.5) with τ = 2 and t = 2, where c ≥ 0 is some constant.
Then, from (3.6) it holds that

ψc(0, a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = c.

By using ψc, we can reformulate LWCP (1.3) as the nonlinear smooth equations

H(z) := H(μ, x, s, y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

μ

Px + Qs + Ry − a
ψw1(μ, x1, s1)

...

ψwn (μ, xn, sn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0 (5.37)

and solve it by Algorithm 4.1, where w = (w1, ..., wn)
T is the weight vector. Let

{zk = (μk, xk, sk, yk)} be the iteration sequence generated by Algorithm 4.1 for
solving LWCP (1.3). We first have the following lemma.

Lemma 4 Let ξ := (μ, a, b)T ∈ R3 and ψc(ξ) be defined by (5.36). Then,

(i) ψc(ξ) is Lipschitz continuous onR3 with a Lipschitz constant M = √
2 + 2;

(ii) for any ξ ∈ R3 any V ∈ ∂ψc(ξ + h) and h → 0,

|ψc(ξ + h) − ψc(ξ) − Vh| ≤ Lc(ξ)‖h‖2,

where

Lc(ξ) :=

⎧
⎪⎨

⎪⎩

9
2
√
c
, i f c > 0,

0, i f c = 0, ξ = 0,
9
√
2

‖ξ‖ , i f c = 0, ξ �= 0.

(5.38)

Proof We prove this lemma in “Appendix.” ��
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Weshow that ifAssumption 5.1 holds, then {‖H(zk)‖} converges to zero as k → ∞.
For this purpose, by Theorem 7, we only need to show the following lemma.

Lemma 5 For LWCP (1.3), letM(·) be the merit function given in (4.1) andH(z) be
defined by (5.37). Then, for any 0 < θ < μ0,M′(·) is Lipschitz continuous on the set
Θ defined in (5.9).

Proof The proof is given in “Appendix.” ��
In terms of the strong smoothness of function H(·) defined in (5.37), we have the

following theorem.

Theorem 10 The functionH(·) given in (5.37) is strongly semismooth with respect to
the solution set Z∗, if any one of the following conditions holds:

(i) The weight vector w > 0;
(ii) The solution set S∗ of LWCP is singleton;
(iii) The LWCP is nondegenerate, i.e., for any (x, s, y) ∈ S∗, we have x + s > 0.

Proof By (i) of Lemma 4, we have ψwi , i = 1, . . . , n, is Lipschitz continuous on Z∗
with Lipschitz constant M = √

2 + 2.
Now, let z = (μ, x, s, y) be any point sufficiently close to Z∗. We have ‖z − z̄‖ is

sufficiently small, where z̄ = (0, x̄, s̄, ȳ) is defined in (5.16). Hence, for i = 1, . . . , n,
denoting ui = (μ, xi , si ), ūi = (0, x̄i , s̄i ), we have

∣
∣ψwi (ui ) − ψwi (ūi ) − V (ui − ūi )

∣
∣ ≤ Lwi (ui )‖ui − ūi‖2,

where V ∈ ∂ψwi (ui ) and Lwi (ui ) is defined in (5.38). Hence, for case (i), when the
weight vector w > 0, we have Lwi (ui ) = 9/(2

√
wi ). For case (ii), when the solution

set S∗ = {x∗, s∗, y∗} is singleton, we have ūi := (0, x∗
i , s∗

i ). So, if ūi = 0, we have
Lwi (ui ) = 0; otherwise, if ūi �= 0, we have Lwi (ui ) = 9

√
2/‖ui‖ ≤ 18

√
2/‖ūi‖

when ui is sufficiently close to ūi such that ‖ui‖ ≥ ‖ūi‖/2 > 0. For case (iii), since

S∗ is a closed set, we have
√
x2i + s2i > θ > 0 for any (x, s, y) ∈ S∗ and some

θ > 0. So, we have Lwi (ui ) = 9
√
2/‖ui‖ ≤ 18

√
2/θ when ui is sufficiently close to

ūi such that ‖ui‖ ≥ ‖ūi‖/2 > θ/2. By the above discussions, based on our definition
of strongly semismooth with respect to Z∗ in Assumption 5.3, we can see the vector
function H(·) given in (5.37) is strongly semismooth with respect to the solution set
Z∗. ��

6 Numerical Results

In this section, we report some numerical results of Algorithm 4.1. All experiments
are carried on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU @ 3.60 GHz and
RAM of 8.00GB. The program codes are written in MATLAB and run in MATLAB
R2018a environment. The parameters used in Algorithm 4.1 are chosen as μ0 =
10−4, σ = 0.2, δ = 0.5, γ = 10−5. Moreover, unless particularly specified, we use
‖H(zk)‖ ≤ 10−6 as the stopping criterion.
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6.1 WCP Over the Second-Order Cone

Optimization problems over the second-order cone have received considerable atten-
tion in recent years for its wide applications in many fields such as engineering,
optimal control and design, machine learning, robust optimization and combina-
torial optimization (e.g., [4,26]). Now, we consider the problem of finding a pair
(x, s, y) ∈ Rn × Rn × Rm such that

x ∈ Kn, s ∈ Kn, F(x, s, y) = 0, x ◦ s = w, (6.1)

with

F(x, s, y) =
(∇ f (x) − s + AT y

Ax − b

)

, (6.2)

where Kn is the n dimensional second-order cone defined by

Kn := {(x1, xT2:n)T ∈ R × Rn−1| x1 ≥ ‖x2:n‖},

“◦” denotes the Jordan product associated with Kn (e.g., [4]), A ∈ Rm×n, b ∈ Rm

and f : Rn → R is a twice continuously differentiable function. Notice that ifw = 0,
then the system (6.1)–(6.2) is the KKT conditions for the nonlinear second-order cone
programming: {min f (x), s.t. Ax = b, x ∈ Kn}.

We set up WCP (6.1)–(6.2) using the data that w = (w1, w
T
2:n)T ∈ Kn with

w2:n = rand(n − 1, 1) and w1 = ‖w2:n‖ + rand(1, 1), A = randn(m, n), b = Au
with u ∈ Kn being generated by the same way as w and f (x) = fi (x)(i = 1, 2, 3),
respectively, where fi (x) is defined by

(i) Quadratic Function:

f1(x) = 1

2
xT Qx + cT x,

where Q = nBBT /‖BBT ‖ with B = rand(n, n) and c = rand(n, 1);
(ii) Extended Powell Function [11]:

f2(x) =
n/4∑

i=1

[(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i )

2 + (x4i−2 − 2x4i−1)
4

+10(x4i−3 − x4i )
4];

(iii) Oren Function [11]:

f3(x) =
[ n∑

i=1

i x2i

]2
.

Asone example of observing local convergence behavior ofNSNA,wefirst generate
one test problem for the quadratic function (i) with n = 100,m = 50 and solve this
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Table 1 Value of ‖H(zk )‖ at the
kth iteration

τ = 0, t = 1.5 τ = 2, t = 2

k = 1 12.8285 8.7837

k = 2 1.2962 1.6764

k = 3 0.1674 0.2244

k = 4 0.0061 0.0142

k = 5 8.5043e−06 1.0043e−04

k = 6 1.6948e−11 5.1236e−09

k = 7 4.9846e−14 6.3705e−14

problem by using x0 = s0 = (1, 0, ..., 0)T and y0 = (1, ..., 1)T as the starting point.
Table 1 gives the value of ‖H(zk)‖ at the kth iteration, in which τ and t are parameter
values used in the smoothing function ψ . We can clearly see the local fast, at least
superlinear, convergence of NSNA.

Next, for each fi (x)(i = 1, 2, 3), we generate 100 instances with different sizes
and test these problems by using the starting point: (1) x0 = s0 = (1, 0, ..., 0)T ,
y0 = (1, ..., 1)T ; (2) x0 = rand(n, 1), s0 = rand(n, 1), y0 = rand(m, 1). In the
experiments, we use the smoothing function ψ with τ = 4rand(1, 1) and t = 2.
Table 2 shows the numerical results of 100 trials for each case, where f denotes the
test functions defined by (i)–(iii), SP denotes the starting point, n and m denote the
problem size, AIT and ACPU denote the average number of iterations and the average
CPU time in seconds, respectively, and AHK denotes the average value of ‖H(zk)‖.
From Table 2, we can see that NSNA is quite efficient and robust by using different
starting points and algorithm parameters for solvingWCP (6.1)–(6.2) over the second-
order cone.

6.2 The LWCP

In this subsection, we consider to solve the quadratic programming and weighted
centering problem [30] (denoted by QPWCP):

min ϕ(x) := 1

2
xT Mx + cT x −

n∑

i=1

wi logxi

s.t. Ax = b, x ≥ 0,

whose dual is

max φ(u, s, y) := −1

2
uT Mu + bT y +

n∑

i=1

wi logsi +
n∑

i=1

wi (1 − logwi )

s.t. s = Mu − AT y + c, s ≥ 0,

where M is an n × n symmetric positive semidefinite matrix, A ∈ Rm×n is a full
row rank matrix with m < n and c ∈ Rn, w ∈ Rn+, b ∈ Rm . For M = 0, the
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Table 2 Numerical results of the WCP given in (6.1)–(6.2)

f (x) SP n m AIT ACPU AHK

Quadratic (1) 1000 500 6.33 3.20 4.9948e−08

1500 750 6.32 8.02 4.0829e−08

2000 1000 6.33 16.02 4.0747e−08

(2) 1000 500 6.51 3.13 3.7571e−08

1500 750 6.63 8.69 4.0645e−08

2000 1000 6.65 17.76 6.8175e−08

Extended Powell (1) 100 100 38.26 0.19 3.7031e−08

100 50 12.52 0.05 9.0767e−08

100 20 9.97 0.04 6.8521e−08

(2) 100 100 14.75 0.06 8.3200e−08

100 50 14.01 0.04 8.2427e−08

100 50 10.72 0.03 4.4850e−08

Oren (1) 30 30 473.54 0.60 8.4200e−09

30 20 254.56 0.31 5.2597e−09

20 20 192.45 0.15 3.9084e−08

(2) 30 30 7.19 0.01 1.0016e−07

30 20 7.18 0.01 7.9289e−08

20 20 7.02 0.01 9.7322e−08

QPWCP reduces to the notion of a linear programming and weighted centering prob-
lem introduced by Anstreicher [1]. By [30, Theorem 2.1], the optimality conditions
of the QPWCP are equivalent to LWCP in (1.3) with

P =
(

A
M

)

, Q =
(

0
−I

)

, R =
(

0
−AT

)

, a =
(

b
− f

)

. (6.3)

We apply our algorithm to solve this LWCP with problem data generated by the
following way. We choose A = randn(m, n) with the rank of A being m and set
M = UUT /‖UUT ‖ with U = rand(n, n). Then, we choose x̂ = rand(n, 1), f =
rand(n, 1) and set b := Ax̂ , ŝ := Mx̂ + f and w := x̂ ŝ. For each problem with
different sizes, we generate 100 instances and test them by using the starting points
x0 = s0 = (1, 0, ..., 0)T and y0 = (0, ..., 0)T . In these experiments, we use the
smoothing function ψ with different τ and t . Numerical results are listed in Table 3.
From Table 3, it appears that the iteration numbers and the CPU time vary slightly for
different t and the best numerical results occur in the case of τ = 0. However, it is yet
unknown how to find a better τ in general.

Now,wewould like compare our algorithm for solvingLWCPwith the interior point
methods proposed by Potra [30]. In this experiment, we choose A = [I −B] ∈ Rm×n

where I = eye(m) and B = rand(m, n − m), and choose M = diag(rand(n, 1)).
Then, we choose x̂ = rand(n, 1), f = rand(n, 1) and set b := Ax̂ , ŝ := Mx̂ + f
and w := x̂ ŝ. To generate a strictly feasible starting point, we first generate a vector
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Table 3 Numerical results of the LWCP given in (1.3) with (6.3)

τ n m t = 1 t = 1.5 t = 2
AIT ACPU AIT ACPU AIT ACPU

0.0 1000 500 5.00 1.17 5.00 1.31 5.00 1.28

1500 1000 5.51 4.19 5.92 5.03 5.52 4.92

2000 1000 5.00 6.60 6.00 8.12 5.00 7.02

2000 1500 5.97 9.55 6.10 10.13 5.97 9.98

2.0 1000 500 6.02 1.46 6.16 1.89 6.02 1.55

1500 1000 6.83 5.21 6.98 6.12 6.81 5.62

2000 1000 6.09 8.13 7.00 10.23 6.05 9.01

2000 1500 7.02 12.15 7.03 13.52 7.02 12.93

3.5 1000 500 8.32 2.03 8.33 2.56 8.32 2.12

1500 1000 8.64 6.60 8.64 6.78 8.64 6.81

2000 1000 8.65 11.45 8.67 11.67 8.67 11.98

2000 1500 8.87 14.51 8.87 14.55 8.87 14.76

x̃ = [xI ; xB]with xB = rand(n−m, 1), xI = BxB . Then, we set x0 = x̃+ x̂, y0 = 0
and s0 = Mx0 + f . Since Ax̃ = 0, we have that (x0, s0, y0) is a strictly feasible
point for the LWCP. It is worth pointing out that this class of LWCP has been also
tested by Zhang [16]. Let gap = ‖xksk − w‖∞, res = ‖Pxk + Qsk + Ryk − a‖∞,
f ea = max{‖xk−‖∞, ‖sk−‖∞} and i ter be the iteration number. In the experiments,
we use max(gap, res, f ea) < 10−9 and i ter > 20 as the stopping criterion for
NSNA and the interior point methods in [30]. For each problem with different sizes,
we test 3 instances. For NSNA, we use the smoothing function ψ with τ = 0 and
t = 1. Numerical results are listed in Table 4, in which A1 and A2 denote NSNA using
a general starting point x0 = s0 = (1, 0, ..., 0)T , y0 = (0, ..., 0)T and the strictly
feasible starting point generated by the above way, respectively. LS-IPM and PC-IPM

denote the largest step interior-point method and the predictor–corrector interior point
method in [30] using the above strictly feasible starting point, respectively. IT and CPU

denote iteration number and the CPU time in seconds, respectively, and ∗ stands for
that the iteration number is greater than 20.

From Table 4, we can see that NSNA is very robust and effective compared with
interior point methods for solving LWCP. This is probably due to the nonmonotone
line search and non-requirement of keeping feasibility of the iterates. Moreover, we
can clearly see from Table 4 that by starting with a non-interior point could not only
simplify the application of the algorithm but also often significantly improve its per-
formance.

7 Conclusion and Final Discussion

In this paper, we have introduced a one-parametric class of smoothing functions which
include the weight vector w. These functions can be used to reformulate WCP in the
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Table 4 Comparison of algorithms for the LWCP given in (1.3) with (6.3)

n m A1 A2 LS-IPM PC-IPM
IT CPU IT CPU IT CPU IT CPU

1000 800 7 2.16 9 2.81 14 3.96 14 7.92

7 2.12 9 2.72 * * 14 7.82

6 1.82 10 3.42 15 4.31 14 7.83

1500 1000 7 5.24 9 6.52 * * 15 20.17

7 5.17 10 7.29 14 9.67 15 20.08

7 5.12 10 7.32 16 10.93 15 20.20

2000 1800 7 12.85 10 18.34 15 25.34 14 46.07

7 12.65 10 18.23 17 29.25 14 46.04

8 14.57 11 20.31 14 24.36 14 47.37

general case as a nonlinear smooth equation. By the equivalent reformulation, we
have proposed a nonmonotone smoothing Newton algorithm (NSNA) to solve WCP.
We have showed that any accumulation point of the iteration sequence is a solution of
WCP.Moreover, when the solution set ofWCP is nonempty, under proper assumptions
which are much weaker than Jacobian nonsingularity assumption, we have proved
that the iteration sequence is bounded and it converges to one solution of WCP locally
superlinearly or quadratically. Hence, compared with existing smoothing Newton-
type algorithms, our algorithm has stronger convergence properties under weaker
assumptions. To the best of our knowledge, our algorithm is the first effective algorithm
to solve the general WCP. Due to the global nonmonotone line search strategy, non-
interior requirement of the iterates and the fast local convergence, NSNA is very robust
and efficient for solving WCP in our numerical experiments.

Finally, we would like to finish the paper with some brief discussion. It is well
known that interior point methods (IPMs) have become attractive due to their well
established complexity analysis. For instance, different IPMs have been investigated
in [1,30,31] for solving LWCP with nice global complexity results. Whether these
complexity results can be extended for general WCP is still not clear. Global com-
plexities for smoothing Newton methods (SNMs) to solve WCP do not exist either.
These complexity results have tight connections with the globalization strategies and
the level of accuracy for solving theNewton system in themethods. To study the global
complexity of NSNA as well as other SNMs and IPMs combined with nonmonotone
line search will be an interesting topic for future research. In addition, some impor-
tant optimization problems recently arising from data minting or machine learning
could be also formulated as WCP, for example, the L1-SQSSVM problem proposed
in [25]. However, such problems often involve large data. So, how to apply SNMs,
which usually involves solving linear systems at each iteration, such as NSNA to
solve these WCPs by exploiting the problem and data structure also deserves further
investigation.
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Appendix: The proof of the example given in remark (ii) for Assump-
tion 5.1

Since M is positive definite, all of its diagonal elements are greater than zero. Without
loss of generality, here we assume that M − In is positive definite where In represents
the n × n identity matrix. Consider the smoothing function

ψc(μ, a, b) = a + b −
√
a2 + b2 + (τ − 2)ab + (4 − τ)c + 4μt , ∀ (μ, a, b) ∈ R+ × R2,

where t ∈ [1, 2] and τ ∈ [0, 4). By (3.6), we have

ψc(0, a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = c.

Then we can reformulate the problem (5.7) as the following nonlinear smooth equa-
tions:

H(z) := H(μ, x, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

μ

s − Mx − a
ψw1(μ, x1, s1)

...

ψwn (μ, xn, sn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0

and apply Algorithm 4.1 to solve it. Let

g(μ, a, b) :=
√
a2 + b2 + (τ − 2)ab + (4 − τ)c + 4μt , ∀ (μ, a, b) ∈ R+ × R2.

Then, H(z) is continuously differentiable at any z ∈ R++ × R2n with its Jacobian

H′(z) =
⎡

⎣
1 0 0
0 −M I
dμ diag(dx ) diag(ds)

⎤

⎦ ,

where

dμ :=
(

− 2t

μ1−t g(μ, x1, s1)
, ...,− 2t

μ1−t g(μ, xn, sn)

)T

,

dx :=
(

1 − x1 + (τ/2 − 1)s1
g(μ, x1, s1)

, ..., 1 − xn + (τ/2 − 1)sn
g(μ, xn, sn)

)T

,

ds :=
(

1 − s1 + (τ/2 − 1)x1
g(μ, x1, s1)

, ..., 1 − sn + (τ/2 − 1)xn
g(μ, xn, sn)

)T

.

123



Journal of Optimization Theory and Applications (2021) 189:679–715 707

Since M is positive definite,H′(z) is nonsingular at any z ∈ R++ ×R2n and we can
find its inverse

H′(z)−1 =
⎡

⎣
1 0 0
z21 z22 z23
z31 z32 z33

⎤

⎦ ,

where

z21 = −[diag(dx ) + diag(ds)M]−1dμ,

z22 = −[diag(dx ) + diag(ds)M]−1diag(ds),

z23 = [diag(dx ) + diag(ds)M]−1,

z31 = −M[diag(dx ) + diag(ds)M]−1dμ,

z32 = I − M[diag(dx ) + diag(ds)M]−1diag(ds),

z33 = M[diag(dx ) + diag(ds)M]−1.

In what follows, we divide the analysis into three parts.
Part 1.We show that diag(dx ) and diag(ds) are positive semidefinite and bounded

when μ → 0+. This result holds by noticing that g(μ, a, b) can be written as

g(μ, a, b) =
√

[a + (τ/2 − 1)b]2 + τ(1 − τ/4)b2 + (4 − τ)c + 4μt

=
√

[b + (τ/2 − 1)a]2 + τ(1 − τ/4)a2 + (4 − τ)c + 4μt ,

and hence for any (μ, a, b) ∈ R+ × R2,

0 ≤ 1 − a + (τ/2 − 1)b

g(μ, a, b)
≤ 2, 0 ≤ 1 − b + (τ/2 − 1)a

g(μ, a, b)
≤ 2.

Part 2.Weshow that ‖[diag(dx )+diag(ds)M]−1‖ ≤
√
ncond(M−In)

2−√
τ

whenμ → 0+,
where cond(M − In) is the conditional number of M − In . First, we have

diag(dx ) + diag(ds) = diag(dxs),

where

dxs :=
(

2 − τ/2(x1 + s1)

g(μ, x1, s1)
, ..., 2 − τ/2(xn + sn)

g(μ, xn, sn)

)T

.

Since
∣
∣ τ/2(a+b)
g(μ,a,b)

∣
∣ ≤ ∣

∣ τ/2(a+b)√
a2+b2+(τ−2)ab

∣
∣ ≤ √

τ holds for any τ ∈ [0, 4) and (μ, a, b) ∈
R+ × R2, we have

0 < 2 − √
τ < 2 − τ/2(xi + si )

g(μ, xi , si )
< 2 + √

τ , ∀ i = 1, ..., n.
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Hence, diag(dxs) is positive definite and so is diag(dxs)−1. Since M − In is positive
definite, it is invertible and (M − In)−1 is also positive definite. So, we have

diag(dx ) + diag(ds)M = diag(dxs) − diag(ds) + diag(ds)M

= diag(dxs) + diag(ds)(M − In)

= diag(dxs)[(M − In)
−1 + diag(dxs)−1diag(ds)](M − In).

Whenμ → 0+, since diag(ds) is positive semidefinite by Part 1, diag(dxs)−1diag(ds)
is positive semidefinite. So, (M − In)−1 + diag(dxs)−1diag(ds) is positive definite.
Hence, when μ → 0+, diag(dx ) + diag(ds)M is nonsingular and

[diag(dx ) + diag(ds)M]−1 = (M − In)
−1[(M − In)

−1

+ diag(dxs)−1diag(ds)]−1diag(dxs)−1,

which implies that

‖[diag(dx ) + diag(ds)M]−1‖ ≤
√
ncond(M − In)

2 − √
τ

,

where cond(M − In) := ‖M − In‖‖(M − In)−1‖.
Part 3. We show that when μ → 0+, if w > 0, then ‖dμ‖ ≤ � where � > 0 is a

constant, and if w ≥ 0, then ‖dμ‖ ≤
√
nt

μ
1− t

2
. This result holds since for any (μ, a, b) ∈

R+ × R2,

2t

μ1−t g(μ, a, b)
= 2t

μ1−t
√[a + (τ/2 − 1)b]2 + τ(1 − τ/4)b2 + (4 − τ)c + 4μt

≤
⎧
⎨

⎩

2tμt−1√
(4−τ)c

, if c > 0,
t

μ
1− t

2
, if c = 0.

Therefore, when μ → 0+, from Parts 1,2 and 3, we have that z22, z23, z32 and z33
are bounded, and z21, z31 are bounded or

‖z21‖ ≤ ncond(M − In)t

(2 − √
τ)μ1− t

2
and ‖z31‖ ≤ n‖M‖cond(M − In)t

(2 − √
τ)μ1− t

2
.

Hence, for any t ∈ [1, 2], we can conclude that for any z = (μ, x, s) ∈ R++ × R2n ,
when μ → 0+, ‖H′(z)−1‖ is bounded or there exists a constant Ct > 0 such that

‖H′(z)−1‖ ≤ Ct

μ1− t
2
.

Since 1 − t
2 ∈ [0, 1/2], there exist constants C > 0 and d ∈ [0, 1/2) such that

Assumption 5.1 holds. This completes the proof. ��
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The proof of Lemma 4 For any ξ = (μ, a, b)T , ξ ′ = (μ′, a′, b′)T ∈ R3, we have

|ψc(ξ) − ψc(ξ
′)| = |ψc(μ, a, b) − ψc(μ

′, a′, b′)|
= |a + b − ‖(a, b,

√
2c, 2μ)T ‖ − (a′ + b′) + ‖(a′, b′,

√
2c, 2μ′)T ‖|

≤ |a − a′| + |b − b′| + |‖(a, b,
√
2c, 2μ)T ‖ − ‖(a′, b′,

√
2c, 2μ′)T ‖|

≤ |a − a′| + |b − b′| + |‖(a, b,
√
2c, 2μ)T − (a′, b′,

√
2c, 2μ′)T ‖|

= |a − a′| + |b − b′| + ‖(a − a′, b − b′, 2(μ − μ′))T ‖
≤
√
2[(a − a′)2 + (b − b′)2] +

√
(a − a′)2 + (b − b′)2 + 4(μ − μ′)2

≤ (
√
2 + 2)‖ξ − ξ ′‖.

This proves (i). Now we prove (ii) by considering the following three cases.
Case 1. If c > 0, then ψc is differentiable at any ξ ∈ R3 with

ψ ′
c(ξ) =

(

− 4μ
√
a2 + b2 + 2c + 4μ2

, 1 − a
√
a2 + b2 + 2c + 4μ2

,

1 − b
√
a2 + b2 + 2c + 4μ2

)T

and

ψ ′′
c (ξ) = 1

(
√
a2 + b2 + 2c + 4μ2)3

× M

where

M :=
⎡

⎣
−4(a2 + b2 + 2c) 4aμ 4bμ

4aμ −(b2 + 2c + 4μ2) ab
4bμ ab −(a2 + 2c + 4μ2)

⎤

⎦ ,

which yields

‖ψ ′′
c (ξ)‖ ≤ ‖M‖

(
√
a2 + b2 + 2c + 4μ2)3

≤
√
18(a2 + b2 + 2c + 4μ2)2

(
√
a2 + b2 + 2c + 4μ2)3

= 3
√
2

√
a2 + b2 + 2c + 4μ2

≤ 3√
c
. (7.1)
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By (7.1), for any u, v ∈ R3 we have

‖ψ ′
c(u) − ψ ′

c(v)‖ ≤ 3√
c
‖u − v‖. (7.2)

For any ξ ∈ R3 and h ∈ R3, ψc is differentiable at ξ + h and hence ∂ψc(ξ + h) =
{ψ ′

c(ξ + h)T }. So, from (7.2) we have for any V ∈ ∂ψc(ξ + h) and h → 0,

|ψc(ξ + h) − ψc(ξ) − Vh| = |ψc(ξ + h) − ψc(ξ) − ψ ′
c(ξ + h)T h|

≤ |ψc(ξ + h) − ψc(ξ) − ψ ′
c(ξ)T h| + |[ψ ′

c(ξ + h) − ψ ′
c(ξ)]T h|

≤ |ψc(ξ + h) − ψc(ξ) − ψ ′
c(ξ)T h| + 3√

c
‖h‖2

=
∣
∣
∣
∣

∫ 1

0
[ψ ′

c(ξ + th) − ψ ′
c(ξ)]T hdt

∣
∣
∣
∣ +

3√
c
‖h‖2

≤ 3√
c
‖h‖2

∫ 1

0
tdt + 3√

c
‖h‖2

= 9

2
√
c
‖h‖2.

Case 2. If c = 0 and ξ = 0, then for any nonzero direction vector h = (μ̃, ã, b̃)T ∈
R3, ψc is smooth at the point 0 + h = h. Thus, V ∈ ∂ψc(0 + h) = {ψ ′

c(h)T } is
uniquely given by

V =
(

− 4μ̃
√

ã2 + b̃2 + 4μ̃2
, 1 − ã

√

ã2 + b̃2 + 4μ̃2
, 1 − b̃

√

ã2 + b̃2 + 4μ̃2

)

.

Then, for any V ∈ ∂ψc(0 + h) and h → 0,

|ψc(0 + h) − ψc(0) − Vh| =
∣
∣
∣
∣ −

√

ã2 + b̃2 + 4μ̃2 + ã2 + b̃2 + 4μ̃2
√

ã2 + b̃2 + 4μ̃2

∣
∣
∣
∣

= 0.

Case 3. If c = 0 and ξ �= 0, then ψc is differentiable at ξ and from (7.1) we have

‖ψ ′′
c (ξ)‖ ≤ 3

√
2

√
a2 + b2 + 4μ2

≤ 3
√
2

√
a2 + b2 + μ2

= 3
√
2

‖ξ‖ . (7.3)
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Next we show that ψ ′
c(ξ) is locally Lipschitz continuous at ξ with the constant 6

√
2

‖ξ‖ .
In fact, let u, v ∈ N (ξ,

‖ξ‖
2 ), we have

ψ ′
c(u) = ψ ′

c(v) +
∫ 1

0
ψ ′′
c (v + t(u − v))(u − v)dt . (7.4)

By (7.3), we have

‖ψ ′′
c (v + t(u − v))‖ ≤ 3

√
2

‖v + t(u − v)‖ . (7.5)

Since u, v ∈ N (ξ,
‖ξ‖
2 ), we have

‖v + t(u − v)‖ = ‖tu + (1 − t)v‖ ∈ N (ξ,
‖ξ‖
2

).

It follows that

‖v + t(u − v)‖ ≥ ‖ξ‖ − ‖v + t(u − v) − ξ‖ ≥ ‖ξ‖ − ‖ξ‖
2

= ‖ξ‖
2

.

This together with (7.5) yields

‖ψ ′′
c (v + t(u − v))‖ ≤ 6

√
2

‖ξ‖ . (7.6)

Thus, from (7.4) and (7.6), we have for any u, v ∈ N (ξ,
‖ξ‖
2 ),

‖ψ ′
c(u) − ψ ′

c(v)‖ ≤ 6
√
2

‖ξ‖ ‖u − v‖. (7.7)

Now we show thatψc(ξ) is strongly semismooth at ξ �= 0. Since ξ �= 0, when h → 0,
ξ + h �= 0 and hence ∂ψc(ξ + h) = {ψ ′

c(ξ + h)T }. So, from (7.7), similarly as the
proof of Case 1, we have for any V ∈ ∂ψc(ξ + h) and h → 0,

|ψc(ξ + h) − ψc(ξ) − Vh| ≤ 6
√
2

‖ξ‖ ‖h‖2
∫ 1

0
tdt + 6

√
2

‖ξ‖ ‖h‖2 = 9
√
2

‖ξ‖ ‖h‖2.

Thus, the proof is completed. ��
The proof of Lemma 5 LetH(z) be defined by (5.37). Then,H(z) is continuously dif-
ferentiable at any z = (μ, x, s, y) ∈ R++ × R2n+m and its Jacobian is

H′(z) =
⎡

⎣
1 0 0 0
0 P Q R
Dμ diag(Dx ) diag(Ds) 0

⎤

⎦ ,
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where

Dμ :=
(

− 4μ
√
x21 + s21 + 2w1 + 4μ2

, ....,− 4μ
√
x2n + s2n + 2wn + 4μ2

)T

,

Dx :=
(

1 − x1
√
x21 + s21 + 2w1 + 4μ2

, ..., 1 − xn
√
x2n + s2n + 2wn + 4μ2

)T

,

Ds :=
(

1 − s1
√
x21 + s21 + 2w1 + 4μ2

, ...., 1 − sn
√
x2n + s2n + 2wn + 4μ2

)T

.

We now divide the proof by the following three parts.
Part (i) We show that H(z) is Lipschitz continuous on R1+2n+m . In fact, since

(Px + Qs + Ry − a)′ = [P, Q, R], we have that Px + Qs + Ry − a is Lipschitz
continuous onR2n+m . Moreover, from (i) of Lemma 4, ψc is Lipschitz continuous on
R3. Hence, H(z) is Lipschitz continuous on R1+2n+m .

Part (ii) For any θ > 0, we show that H′(z) is bounded and Lipschitz continuous
on the set

Ω := {z = (μ, x, s, y) ∈ R++ × R2n+m | μ ≥ θ}.

In fact, for any i = 1, ..., n, since

0 ≤ 4μ
√
x2i + s2i + 2wi + 4μ2

≤ 2,

0 ≤ 1 − xi
√
x2i + s2i + 2wi + 4μ2

≤ 2,

0 ≤ 1 − si
√
x2i + s2i + 2wi + 4μ2

≤ 2,

Dμ, Dx and Ds are bounded and hence H′(z) is bounded. Let

Γ := {υ = (μ, a, b) ∈ R++ × R2| μ ≥ θ}.

For any υ ∈ Γ , define

fc(υ) := 1 − a
√
a2 + b2 + 2c + 4μ2

.

Since μ ≥ θ > 0, fc(υ) is continuously differentiable and

f ′
c(υ) = 1

(
√
a2 + b2 + 2c + 4μ2)3

[

4aμ,−(b2 + 2c + 4μ2), ab

]

,
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which yields

‖ f ′
c(υ)‖ =

√
16a2μ2 + (b2 + 2c + 4μ2)2 + a2b2

(
√
a2 + b2 + 2c + 4μ2)3

.

By noticing that

16a2μ2 ≤ 2(a2 + 4μ2)2 ≤ 2(a2 + b2 + 2c + 4μ2)2,

(b2 + 2c + 4μ2)2 ≤ (a2 + b2 + 2c + 4μ2)2,

a2b2 ≤ (a2 + b2)2 ≤ (a2 + b2 + 2c + 4μ2)2,

we have

‖ f ′
c(υ)‖ ≤ 2

√
a2 + b2 + 2c + 4μ2

≤ 1

μ
≤ 1

θ
.

Thus, for any υ̃, υ ∈ Γ , we have

‖ fc(υ̃) − fc(υ)‖| ≤ 1

θ
‖υ̃ − υ‖.

This implies that fc is Lipschitz continuous onΓ and hence Dx is Lipschitz continuous
on Ω . By a similar way, we can show that Ds and Dμ are also Lipschitz continuous
on Ω and so isH′(z).

Part (iii) We show that M′(z) is Lipschitz continuous on the set Θ defined by
(5.9). In fact,M(z) is continuous differentiable at any z ∈ R++ × R2n+m and

M′(z) = 2H(z)TH′(z).

So, for any z̃, z ∈ Θ , by Parts (i) and (ii) and ‖H(z̃)‖ ≤ 2‖H(z0)‖, there exists a
constant M > 0 such that

‖M′(z̃) − M′(z)‖ = 2‖H(z̃)TH′(z̃) − H(z)TH′(z)‖
= 2‖H(z̃)T [H′(z̃) − H′(z)] − [H(z) − H(z̃)]TH′(z)‖
≤ 2[‖H(z̃)‖‖H′(z̃) − H′(z)‖ + ‖H(z) − H(z̃)‖‖H′(z)‖]
= M‖z − z̃‖.

This completes the proof. ��
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