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Abstract
An inexact alternating direction method of multiplies (I-ADMM) with an expansion
linesearch stepwas developed for solving a family of separableminimization problems
subject to linear constraints, where the objective function is the sum of a smooth but
possibly nonconvex function and a possibly nonsmooth nonconvex function. Global
convergence and linear convergence rate of the I-ADMM were established under
proper conditions while inexact relative error criterion was used for solving the sub-
problems. In addition, a unified proximal gradient (UPG) method with momentum
acceleration was proposed for solving the smooth but possibly nonconvex subprob-
lem. This UPG method guarantees global convergence and will automatically reduce
to an optimal accelerated gradient method when the smooth function in the objective
is convex. Our numerical experiments on solving nonconvex quadratic programming
problems and sparse optimization problems from statistical learning show that the
proposed I-ADMM is very effective compared with other state-of-the-art algorithms
in the literature.
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1 Introduction

We consider the following separable nonconvex and nonsmooth linearly constrained
optimization problem

min
(x,y)∈Rnx×R

ny
F(x, y) := f (x) + g(y) subject to Ax + By = b, (1.1)

where f : Rnx → R is Lipschitz continuously differentiable, but possibly nonconvex,
g : Rny → R is a proper, lower semi-continuous, possibly nonconvex and nonsmooth
function and A ∈ R

m×nx , B ∈ R
m×ny and b ∈ R

m are given data. Note that constraints
of the form y ∈ Y for a closed set Y ⊂ R

ny can be incorporated in the objective
using g as an indicator function of Y . In recent years, problems in the form of (1.1)
have attracted sufficient attention both theoretically and numerically, simply due to
its special structure and many concrete important applications including statistical
learning [10, 20, 46], compressive sensing [64, 65, 67], machine learning [3, 42],
phase retrieval [63], image restoration and extraction [13, 69], etc.

It is well-known that the Alternating Direction Method of Multiplies (ADMM) has
obtained great success in both theory and numerical efficiency for solving linearly
constrained separable convex optimization. Hence, the original ADMM [22, 26] and
its variants for solving convex problems have been extended recently to solve the
nonconvex structured optimization problem (1.1). Unlike the well-studied Augmented
LagrangianMethod (ALM) [41],ADMMcan exploit the problem’s separable structure
and use the special properties of each component function in the objective. Directly
extending the original ADMMfor solving the problem (1.1) performs the optimization
in the following alternative order:

⎧
⎪⎨

⎪⎩

yk+1 ∈ argmin
y

Lβ(xk, y,λk),

xk+1 ∈ argmin
x

Lβ(x, yk+1,λk),

λk+1 = λk − sβ
(
Axk+1 + Byk+1 − b

)
,

(1.2)

where s ∈ (0, 1+√
5

2 ) denotes the stepsize of dual variable λ and Lβ(x, y,λ) is the
augmented Lagrangian with penalty parameter β > 0 defined as

Lβ(x, y,λ) = L(x, y,λ) + β

2
‖Ax + By − b‖2 (1.3)
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and L(x, y,λ) is the Lagrangian function of (1.1) defined as

L(x, y,λ) = f (x) + g(y) − λT(Ax + By − b).

The global convergence and complexity of 2-block ADMM, such as (1.2) for solv-
ing convex problems have been well-studied [18, 39]. Multi-block ADMMs have
also received intensive research in both deterministic and stochastic setting includ-
ing [2, 4, 5, 12, 14, 17, 23, 27, 35, 38, 48, 49]. However, all the above mentioned
work focuses on convex optimization problems. The studies of ADMM for solving
(1.1) with nonconvex objective function are much limited despite its high demands in
applications. Indeed, unlike solving convex problems, ADMM for solving nonconvex
problems could fail for arbitrary choice of the penalty parameter β > 0. However,
with proper choice of β, the excellent performance of nonconvex ADMM has been
observed in recent applications [61]. These mysteries of practical success in fact trig-
gered the recent rigorous study on ADMM for nonconvex optimization. For example,
under suitable assumptions, ADMM and its variants have been shown convergent [30,
31, 44, 45] for solving two block and multi-block nonconvex problems. Moreover,
ADMMs have been applied to solve some special nonconvex models with particular
choices of A and B [43, 47] and certain nonconvex signal/image recovery problems
[6, 69]. Note that the dominant computation in each iteration of ADMM is to solve
its subproblems. Hence, how to solve these subproblems inexactly while still main-
taining nice convergence properties will be critical for the overall success of ADMM,
especially when no closed-form solution of the subproblem exists [33, 34, 64]. How-
ever, the current work of nonconvex ADMM for (1.1) still lacks sufficient rigorous
study on solving its subproblems inexactly in a more practical way. A nice theoretical
framework on nonconvex ADMM is discussed in [61], but the theories therein still
assume exact subproblem solution of the proposed ADMMand its global convergence
under the adaptive inexact criteria in [61] remains incomplete.Moreover, no numerical
experiments and only unit dual stepsize are considered in [61], while larger range of

dual stepsize s ∈ (0,
√
5+1
2 ) is allowed in the original ADMM.

In this paper, motivated by the recent surged interests for studying nonconvex
ADMM and the adaptive relative error strategy used in ALM and convex ADMM
(Ex. [33]), we propose an Inexact ADMM (I-ADMM) framework with an expansion
linesearch step (seeAlgorithm3.1) to solve the nonconvexproblem (1.1).Our proposed
I-ADMM has the following major features.

(a)Theproposed I-ADMMsolves the subproblems inexactly to adaptive accuracywhile
guarantees global convergence and linear convergence rate under proper conditions.
In the literature, unless special structure of f or g exits, almost all efficient ADMMs
for convex problems solve the subproblems inexactly [15, 18, 28, 37]. Among these
inexact ADMMs, one usual way is to solve the subproblems to the accuracy based on
some absolute summable error criteria, but often without guidance on how to adap-
tively select the error tolerance except requiring it to be summable. Moreover, ADMM
is just a splitting version of ALM, for which nice convergence theory and encourag-
ing numerical results are often obtained [19, 55] using adaptive relative subproblem
stopping criteria. Hence, ideally we should also solve the subproblems of I-ADMM
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to an adaptive accuracy while maintaining desirable convergence properties. In this
paper, we establish global convergence and linear convergence rate of I-ADMMunder
a local error bound condition and a weakly convex property of g.
(b) The proposed I-ADMMallows more flexible stepsize s ∈ (0, 2) of the dual variable
stepsize and applies an expansion linesearch step to accelerate the convergence. It is
well-known that the dual stepsize s of ADMM for solving convex optimization can
be arbitrary in the interval (0, (

√
5 + 1)/2) [2, 21, 26]. Hence, it is desirable to allow

a more flexible dual stepsize of I-ADMM while not losing convergence. But only
fixed dual stepsize s = 1 was discussed in almost all the current nonconvex ADMMs
[6, 43, 47, 61], except the methods in [68, 69] allow s ∈ (0, (

√
5 + 1)/2) for an

image recovery problem as original ADMM and s ∈ (0, 2) for a linearized ADMM.
However, both methods assume exact subproblem or linearized subproblem solution.
In this paper, applying a much different potential energy function, we show that the
dual stepsize interval can be (0, 2) even with inexact subproblem solution. In addition,
an expansion linesearch step (see step 6 of Algorithm 3.1) is applied in our I-ADMM,
which not only improves the numerical performance but also reduces the sensitivity
of algorithm parameters as well.

(c)We propose a unified proximal gradient (UPG) method with momentum accelera-
tion to solve the nonconvex smooth x-subproblem. Our UPG method is motivated by
the extrapolation techniques for solving both convex and nonconvex optimization [8,
62]. Uniform proximal gradient methods were also proposed in [24, 25]. However,
[24] requires all iterates must belong to a bounded set for global convergence and
the method in [25] could just reduce to a simple proximal descent method without
any momentum acceleration steps for nonconvex optimization. Our UPG method is
particularly designed for solving x-subproblem arising in our I-ADMM. This UPG
method guarantees global convergence for solving the smooth but possibly noncon-
vex subproblem problem andwill automatically reduce to an optimal gradient method,
maintaining optimal complexity, when the function f in the objective is convex.

(d) The framework of I-ADMM ismore general and flexible thanmost of ADMMs in the
literature.Whenno expansion step (Step 6ofAlgorithm3.1) is used, this I-ADMMwill
just reduce to a particular inexact version of nonconvex ADMM without a relaxation
step. But our linesearch expansion step often allowsmuch larger stepsize than the fixed
relaxation stepsize used in [18, 36, 40]. Convergence of the ADMM-type methods
in [11, 47] were established for (1.1) with B = I and b = 0 under the Kurdyka-
Łojasiewicz property, while we have used more general problem settings and different
assumptions for establishingglobal convergence and linear convergence rate.Although
the over-relaxation step was adopted in [29], the involved subproblems were also
solved exactly.Moreover, our numerical experiments show that the proposed I-ADMM
is very effective compared with other state-of-the-art algorithms in the literature and
could obtain more accurate solution.

The paper is organized as follows. In Sect. 2, we introduce some notations, defini-
tions and some well-known results in the literature. Section3 describes the framework
of our proposed I-ADMM algorithm. The global convergence and convergence rate
of I-ADMM are studied in Sect. 4. In Sect. 5, we propose a Unified Proximal Gradi-
ent (UPG) method with momentum acceleration for solving the smooth but possibly
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nonconvex subproblem. Numerical experiments on solving some nonconvex quadratic
programming problems and sparse optimization problems from statistical learning are
given in Sect. 6. Conclusions are drawn in Sect. 7.

2 Notation and preliminaries

Let R, Rn , and Rn×m be the sets of real numbers, n dimensional real column vectors,
and n×m real matrices, respectively. Let I denote the identitymatrix and 0 denote zero
matrix/vector. For symmetric matrices A and B of the same dimension, A � B (A �
B) means A− B is a positive definite (semidefinite) matrix. For two vectors v and u in
R
n , u > v (u ≥ v) means u is component-wise larger (not less than) v. We use ‖·‖ and

〈·, ·〉 to denote the standard Euclidean norm inRn and the associated inner product. For
any positive semidefinite matrix D � 0, let ‖x‖2D = xTDx. For a matrix A, Range(A)

denotes the range of A and for a nonempty closed set C ⊆ R
n , we use dist(x, C) to

denote the Euclidean distance from x to C, i.e., dist(x, C) = infz∈C ‖x− z‖. Given an
extended real-valued function h : Rn → [−∞,∞], dom h := {x ∈ R

n : h(x) < ∞}
denotes its effective domain. A function h is said to be proper if h(x) > −∞ for all
x ∈ R

n and dom h is nonempty. For a proper lower semi-continuous function h, its
(limiting-) subdifferential [54, Definition 8.3 (b)] at x ∈ dom h, denoted as ∂h(x), is
defined as

∂h(x) :=
{
ν ∈ R

n : ∃xk → x, h(xk) → h(x), νk → ν with νk ∈ ∂̂h(xk)
}

, (2.1)

where ∂̂h(x) denotes the regular subdifferential [54, Definition 8.3 (a)] of h at x given
as

∂̂h(x) :=
{

ν ∈ R
n : lim inf

z→x,z �=x

h(z) − h(x) − 〈ν, z − x〉
‖z − x‖ ≥ 0

}

.

It is well-known that the subdifferential (2.1) coincides with the classical subdifferen-
tial of a proper closed convex function h and is the gradient of h, denoted as∇h, when
h is continuously differentiable. However, the limiting subdifferential plays a much
wider role in nonsmooth and nonconvex analysis and optimization [54, Exercise 8.8
and Proposition 8.12]. For example, the Fermat’s rule remains true, that is, if x is a
local minimizer of h, then 0 ∈ ∂h(x) [54, Theorem 10.1].

3 Algorithm description

We propose an inexact ADMM (I-ADMM, i.e., Algorithm 3.1) with an expansion
linesearch step to solve the possibly nonsmooth and nonconvex problem (1.1). At
each iteration, both the y-subproblem, i.e.,

min
y∈Rny

Lk
y(y) := Lβ(xk, y,λk) + β

2
‖y − yk‖2Dk

y
, (3.1)
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and the x-subproblem, i.e.,

min
x∈Rnx

Lk
x(x) := Lβ(x, yk+1,λk) + β

2
‖x − xk‖2Dk

x
, (3.2)

are allowed to be solved inexactly, whereDk
x � 0 andDk

y � 0 could be two adaptively
chosen uniformly upper bounded positive semidefinite matrices. More precisely, in
Algorithm 3.1, it requires the yk+1 generated at the k-th iteration satisfies

β

2
‖yk+1 − yk‖2Dy

+ Lβ(xk, yk+1,λk) ≤ Lβ(xk, yk,λk) (3.3)

for some positive definite matrix Dy � 0, and there exists a positive constant cy > 0
and some ξ k+1

y ∈ ∂yLβ(xk, yk+1,λk) such that

‖ξ k+1
y ‖ ≤ cyβ‖yk+1 − yk‖. (3.4)

For inexact solution of x-subproblem, it requires the x̂k generated at the k-th iteration
of Algorithm 3.1 satisfies

β

2
‖̂xk − xk‖2Dx

+ Lβ (̂xk, yk+1,λk) ≤ Lβ(xk, yk+1,λk) (3.5)

for some positive definite matrix Dx � 0, and there exists a positive constant cx > 0
such that ξ k+1

x = ∇xLβ (̂xk, yk+1,λk) satisfies

‖ξ k+1
x ‖ ≤ cxβ

(
‖̂xk − xk‖ + ‖yk+1 − yk‖

)
. (3.6)

The algorithm stops when Rk+1 is sufficiently small, where

Rk+1 = ‖̂xk − xk‖ + ‖yk+1 − yk‖ + ‖̂rk+1‖, (3.7)

and r̂k+1 = Âxk + Byk+1 −b. Furthermore, we see that an expansion linesearch step
for x-iterates is applied in Step 6 of Algorithm 3.1. From this expansion step, we have
φ(αk) = Lβ(xk+1, yk+1,λk+1), φ(1) = Lβ (̂xk, yk+1,λk+1) and the stepsize αk ≥ 1
is chosen such that

Lβ(xk+1, yk+1,λk+1) ≤ Lβ (̂xk, yk+1,λk+1) − δβ‖xk+1 − x̂k‖2, (3.8)

where δ ∈ (0, 1) is an algorithm parameter. As standard linesearch techniques in opti-
mization, this Armijo-type linesearch step could significantly improve the algorithm
performance as well as reduce the sensitivity of the choice of algorithm parameters.

We now have the following comments regarding the conditions (3.3), (3.4), (3.5)
and (3.6) for the subproblem solutions. First, since {Dk

x} and {Dk
y} are chosen uniformly

upper bounded, supposing functions Lk
x(·) and Lk

y(·) are bounded from below, we can
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Initialization: parameters β > 0, s ∈ (0, 2), δ ∈ (0, 1) and η > 1,
starting point w0 = (x0, y0,λ0).

For k = 0, 1, 2, . . .
1. Choose uniformly upper bounded matrices Dk

y � 0 and Dk
x � 0.

2. Solve yk+1 ≈ argminy∈Rny Lβ(xk , y,λk ) + β
2 ‖y − yk‖2Dk

y
inexactly such

that (3.3) and (3.4) are satisfied.

3. Solve x̂k ≈ argminx∈Rnx Lβ(x, yk+1, λk ) + β
2 ‖x − xk‖2Dk

x
inexactly such

that (3.5) and (3.6) are satisfied.
4. If Rk+1 defined in (3.7) is sufficiently small, stop.
5. Update the Lagrange multiplier:

λk+1 = λk − sβ( Âxk + Byk+1 − b).
6. Expansion step for the x-iterate:

xk+1 = xk + αk d̂kx, where d̂k = x̂k − xk and αk = η j with j ≥ 0
being the largest integer such that

φ(αk ) ≤ φ(1) − δβ‖xk+1 − x̂k‖2 and φ(α) = Lβ(xk + αd̂kx, y
k+1, λk+1).

end

Algorithm 3.1 An inexact ADMM (I-ADMM) for separable nonconvex optimization problem (1.1)

find yk+1 and x̂k such that (3.4) and (3.6) will be satisfied. In addition, if Rk+1 = 0,
we can derive that wk := (xk, yk,λk) is a stationary point of the problem (1.1) (see
definition (4.22)). On the other hand, if {Dk

x} and {Dk
y} are chosen such that

‖̂xk − xk‖2Dk
x

≥ ηx‖̂xk − xk‖2 and ‖yk+1 − yk‖2Dk
y

≥ ηy‖yk+1 − yk‖2

for some constants ηx > 0 and ηy > 0, then for any x̂k satisfyingLk
x (̂x

k) ≤ Lk
x(x

k) and
any yk+1 satisfying Lk

y(y
k+1) ≤ Lk

y(y
k), the conditions (3.3) and (3.5) will hold with

Dx = ηxI andDy = ηyI. Obviously, one simple choice could be lettingDk
x = ηxI and

Dk
y = ηyI for all k ≥ 0. However, under certain circumstances, it is not even necessary

to require positive definiteness of {Dk
x} or {Dk

y} in order to satisfy the conditions (3.3)
and (3.5). For instance, denoting L > 0 as theLipschitz constant of∇ f , if ATA+Dk

x �
0 and the parameter β is sufficiently large such that β(ATA + Dk

x) � (L + 2ηβ)I for
some η > 0, the objective function Lk

x(·) of the x-subproblem (5.1) will be uniformly
strongly convex with modulus greater than 2ηβ > 0. Under this case, all points
sufficiently close to the minimizer of the x-subproblem (5.1) will satisfy (3.5) with
Dx = ηI. Hence, in the following, we assume that we can solve the subproblems (3.1)
and (3.2) inexactly to meet the conditions (3.3), (3.4), (3.5) and (3.6).

4 Convergence analysis

In this section, wewould like to study the convergence properties of Algorithm 3.1. For
the convergence analysis, we need the following assumptions throughout the paper:
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Assumption 4.1 The gradient of f is Lipschitz continuous, i.e., there exits a constant
L > 0 such that

‖∇ f (z1) − ∇ f (z2)‖ ≤ L‖z1 − z2‖ (4.1)

for any z1, z2 ∈ R
nx .

Assumption 4.2 (Range(B) ∪ b) ⊆ Range(A).

Based on Assumption 4.2, we have λk+1 − λk = −sβrk+1 ∈ Range(A), which
implies

‖λk+1 − λk‖ ≤ σ
− 1

2
A ‖AT(λk+1 − λk)‖, (4.2)

where σA is the smallest positive eigenvalue of ATA (or equivalently the smallest
positive eigenvalue of AAT). Certainly, Assumption 4.2 holds if A is nonsingular or
has full column or full row rank.

4.1 Technical preliminaries

In the following, to facilitate the analysis, for all k ≥ 0 let us denote

d̂kx := x̂k − xk, d̃kx := xk+1 − x̂k, dky := yk+1 − yk and dkλ := λk+1 − λk,

and define

ψ1(s) = max

{

1,
s2

(2 − s)2

}

and ψ2(s) = max

{
1 − s

s
,
s − 1

2 − s

}

. (4.3)

It is easy to see that ψ1(s) > 0 and ψ2(s) ≥ 0 for any s ∈ (0, 2). Then, we have the
following lemma.

Lemma 4.1 Suppose the Assumption 4.1 holds and the sequence {wk} generated by
Algorithm 3.1 satisfy the condition (3.6). Then, for all k ≥ 1, we have

‖ATdkλ‖2 ≤ ψ2(s)
(
‖ATdk−1

λ ‖2 − ‖ATdkλ‖2
)

+ 2ψ1(s)(L + cxβ)2‖̂dkx‖2

+8ψ1(s)L
2‖̃dk−1

x ‖2 + 8ψ1(s)c
2
xβ

2
(
‖̂dk−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)
.

(4.4)

Proof By the definition of ξ k+1
x = ∇xLβ (̂xk, yk+1,λk), we have

ξ k+1
x = ∇ f (̂xk) + AT( − λk + β r̂k+1),

where r̂k+1 = Âxk + Byk+1 − b. Hence, we have

ATλk = ∇ f (̂xk) − ξ k+1
x + βAT̂rk+1,
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which follows from λk+1 = λk − sβ r̂k+1 that

s ATλk = s
(∇ f (̂xk) − ξ k+1

x
) + AT(λk − λk+1).

So, we have
ATλk+1 = s

(
∇ f (̂xk) − ξ k+1

x

)
+ (1 − s)ATλk,

which by dkλ = λk+1 − λk gives

ATdkλ = sδk + (1 − s)ATdk−1
λ , (4.5)

where
δk = ∇ f (̂xk) − ∇ f (̂xk−1) − ξ k+1

x + ξ kx . (4.6)

In the following we consider two cases on s ∈ (0, 1] or s ∈ (1, 2).
Case 1: s ∈ (0, 1]. It follows from (4.5) and the convexity of ‖ · ‖2 that

‖ATdkλ‖2 ≤ s‖δk‖2 + (1 − s)‖ATdk−1
λ ‖2.

By subtracting (1− s)‖ATdkλ‖2 and dividing s from both sides of the above inequality,
we derive

‖ATdkλ‖2 ≤ ‖δk‖2 + 1 − s

s

(
‖ATdk−1

λ ‖2 − ‖ATdkλ‖2
)

. (4.7)

Case 2: s ∈ (1, 2). It follows from (4.5) that

‖ATdkλ‖2 = (1 − s)2‖ATdk−1
λ ‖2 + s2‖δk‖2 + 2s(1 − s)〈ATdk−1

λ , δk〉. (4.8)

Then, by (4.8) and Cauchy-Schwartz inequality, for an ν > 0 we have

‖ATdkλ‖2 ≤ (1 − s)2‖ATdk−1
λ ‖2 + s2‖δk‖2 + s(s − 1)

(
ν‖ATdk−1

λ ‖2 + 1

ν
‖δk‖2

)

= [
(1 − s)2 + s(s − 1)ν

]‖ATdk−1
λ ‖2 +

(
s2 + s(s − 1)

ν

)
‖δk‖2. (4.9)

By choosing ν = (2 − s)/s, we have

(1 − s)2 + s(s − 1)ν = s − 1 and s2 + s(s − 1)

ν
= s2

2 − s
.

So, we have from from (4.9) that

‖ATdkλ‖2 ≤ (s − 1)‖ATdk−1
λ ‖2 + s2

2 − s
‖δk‖2.
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By subtracting (s − 1)‖ATdkλ‖2 and dividing 2 − s from both sides of the above
inequality, we derive

‖ATdkλ‖2 ≤ s2

(2 − s)2
‖δk‖2 + s − 1

2 − s

(
‖ATdk−1

λ ‖2 − ‖ATdkλ‖2
)
. (4.10)

Now, combining (4.7) and (4.10) and noticing the definition of functions ψ1 and
ψ2 in (4.3), we have

‖ATdkλ‖2 ≤ ψ1(s)‖δk‖2 + ψ2(s)
(
‖ATdk−1

λ ‖2 − ‖ATdkλ‖2
)
. (4.11)

In addition, by (3.6), (4.1), x̂k − x̂k−1 = d̂kx + d̃k−1
x and the definition of δk in (4.6),

we have

‖δk‖2 = ‖∇ f (̂xk) − ∇ f (̂xk−1) − ξ k+1
x + ξ kx ‖2

≤
(
L ‖̂dkx + d̃k−1

x ‖ + cxβ
(
‖̂dkx‖ + ‖̂dk−1

x ‖ + ‖dky‖ + ‖dk−1
y ‖

) )2
(4.12)

≤
[
(L + cxβ)‖̂dkx‖ + L ‖̃dk−1

x ‖ + cxβ
(
‖̂dk−1

x ‖ + ‖dky‖ + ‖dk−1
y ‖

) ]2

≤ 2(L + cxβ)2‖̂dkx‖2 + 8L2‖̃dk−1
x ‖2 + 8c2xβ

2
(
‖̂dk−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)
.

Finally, the conclusion (4.4) follows from the above inequality and (4.11). ��
Now, let us denotewk = (xk, yk,λk), ŵk = (̂xk−1, yk,λk) and define the potential

energy functions as

Êk+1 = Lβ(ŵk+1) + ̂k and Ek+1 = Lβ(wk+1) + k, (4.13)

where

̂k = 8(1 + τ)ψ1(s)c2xβ

sσA

(
‖̂dkx‖2 + ‖dky‖2

)
+ (1 + τ)ψ2(s)

sβσA
‖ATdkλ‖2,

k = ̂k + 8(1 + τ)ψ1(s)L2

sβσA
‖̃dkx‖2

and τ is any constant satisfying 0 < τ < δ < 1. Then, based on the previous lemma,
we can derive the following potential energy reduction theorem.

Theorem 4.1 Suppose the Assumptions 4.1–4.2 hold and the sequence {wk} generated
by Algorithm 3.1 satisfy the conditions (3.3), (3.5) and (3.6). For any δ ∈ (0, 1), let
τ ∈ (0, δ) be the constant in the potential energies Ek and Êk defined in (4.13). If the
parameters in Algorithm 3.1 are chosen such that

D̂x := 1 − τ

2(1 + τ)
Dx − ψ1(s)

[
2(L/β + cx)2 + 8c2x

]

sσA
I � 0, (4.14)
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Dy := 1 − τ

16(1 + τ)
Dy − ψ1(s)c2x

sσA
I � 0, (4.15)

and

D̃x :=
(

δ − τ

1 + τ
− 8ψ1(s)(L/β)2

sσA

)

I � 0. (4.16)

Then, for all k ≥ 1, we have

Ek+1 ≤ Ek − τβ

2
‖̂dkx‖2Dx

− τβ

2
‖dky‖2Dy

− τ

sβ
‖dkλ‖2 − τβ‖̃dkx‖2 (4.17)

and

Êk+1 ≤ Êk − τβ

2
‖̂dkx‖2Dx

− τβ

2
‖dky‖2Dy

− τ

sβ
‖dkλ‖2 − τβ‖̃dk−1

x ‖2. (4.18)

Proof First, by (3.3), (3.5) and (4.2), we have

Lβ(ŵk+1) − Lβ(wk)

= Lβ (̂xk, yk+1,λk+1) − Lβ (̂xk, yk+1,λk) + Lβ (̂xk, yk+1,λk)

−Lβ(xk, yk+1,λk) + Lβ(xk, yk+1,λk) − Lβ(xk, yk,λk)

≤ 1 + τ

sβ
‖dkλ‖2 − β

2
‖̂dkx‖2Dx

− β

2
‖dky‖2Dy

− τ

sβ
‖dkλ‖2

≤ 1 + τ

sβσA
‖ATdkλ‖2 − β

2
‖̂dkx‖2Dx

− β

2
‖dky‖2Dy

− τ

sβ
‖dkλ‖2. (4.19)

In addition, by (4.4), we obtain

1 + τ

sβσA
‖ATdkλ‖2 (4.20)

≤ (1 + τ)ψ1(s)

sβσA

[
2(L + cxβ)2‖̂dkx‖2 + 8c2xβ

2
(
‖̂dk−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)

+8L2‖̃dk−1
x ‖2

]
+ (1 + τ)ψ2(s)

sβσA

(
‖ATdk−1

λ ‖2 − ‖ATdkλ‖2
)

.

Then, plugging (4.20) into (4.19), by (3.8) and d̃kx = xk+1 − x̂k , we have

Lβ(wk+1) − Lβ(wk)

≤ Lβ(ŵk+1) − Lβ(wk) − δβ‖xk+1 − x̂k‖2

≤ 8(1 + τ)ψ1(s)c2xβ

sσA

(
‖̂dk−1

x ‖2 − ‖̂dkx‖2 + ‖dk−1
y ‖2 − ‖dky‖2

)

+8(1 + τ)ψ1(s)L2

sβσA

(
‖̃dk−1

x ‖2 − ‖̃dkx‖2
)
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−τβ

2
‖̂dkx‖2Dx

− τβ

2
‖dky‖2Dy

− τ

sβ
‖dkλ‖2 − τβ‖̃dkx‖2

−(1 + τ)β
(
‖̂dkx‖2D̂x

+ 8‖dky‖2Dy
+ ‖̃dkx‖2D̃x

)

+ (1 + τ)ψ2(s)

sβσA

(‖ATdk−1
λ ‖2 − ‖ATdkλ‖2

)
, (4.21)

where 0 < τ < δ < 1, D̂x � 0, Dy � 0 and D̃x are defined in (4.14), (4.15) and
(4.16), respectively. Then, (4.17) follows from (4.21) and the definition of Ek+1 in
(4.13). Similarly, by (3.8) and d̃kx = xk − x̂k−1, we have

Lβ(ŵk+1) − Lβ(ŵk) ≤ Lβ(ŵk+1) − Lβ(wk) − δβ‖xk − x̂k−1‖2
= Lβ(ŵk+1) − Lβ(wk) − δβ‖̃dk−1

x ‖2.

So, plugging (4.20) into (4.19), we can similarly derive by the definition of Êk+1 in
(4.13) that (4.18) holds. ��

4.2 Global convergence and sublinear convergence rate

We say w∗ = (x∗, y∗,λ∗) is a stationary point of the problem (1.1) if 0 ∈ ∂L(w∗),
i.e.,

0 = ∇ f (x∗) − ATλ∗, 0 ∈ ∂g(y∗) − BTλ∗ and Ax∗ + By∗ = b. (4.22)

Then, it is obvious that wk = (xk, yk,λk) is a stationary point of (1.1) if Rk+1 = 0,
where Rk is defined in (3.7). Hence, in the following global convergence theorem, we
assume Rk �= 0 for all k and an infinite sequence {wk} is generated by Algorithm 3.1.
And, in the following, we denote

rk := Axk + Byk − b and dkx := xk+1 − xk = d̃kx + d̂kx. (4.23)

Theorem 4.2 Suppose the Assumptions 4.1–4.2 hold and the sequence {wk} generated
by Algorithm 3.1 satisfy the conditions (3.3), (3.4), (3.5) and (3.6). If the parameters
in Algorithm 3.1 are chosen such that (4.14), (4.15) and (4.16) hold, and {Êk} defined
in (4.13) is bounded from below, then there exists a F∗ such that

lim
k→∞L(xk, yk,λk) = lim

k→∞Lβ(xk, yk,λk) = lim
k→∞ Ek = lim

k→∞ Êk = F∗. (4.24)

In addition, we have

lim
k→∞ dist(0, ∂L(wk)) = lim

k→∞ dist(0, ∂Lβ(wk)) = 0 (4.25)

and any limit point w∗ of {wk} is a stationary point of the problem (1.1).
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Proof If {Êk} is bounded from below, we obtain from (4.18) that

c
K∑

k=1

{
‖̂dkx‖2Dx

+ ‖dky‖2Dy
+ ‖dkλ‖2 + ‖̃dk−1

x ‖2
}

≤ Ê1 − Ê K+1 ≤ Ê1 − P, (4.26)

where c = min{τβ/2, τ/(sβ)} > 0 and P is the lower bound of Ek . Then, (4.26),
Dx � 0 and Dy � 0 imply that

lim
k→∞ ‖̃dkx‖ = 0, lim

k→∞ ‖̂dkx‖ = 0, lim
k→∞ ‖dky‖ = 0 and lim

k→∞ ‖dkλ‖ = 0.

(4.27)
In addition, by (4.27), dkλ = −sβ r̂k+1 and the definition of Rk in (3.7), we have

lim
k→∞ ‖̂rk‖ = 0 and lim

k→∞ Rk = lim
k→∞(‖̂dk−1

x ‖ + ‖dk−1
y ‖ + ‖̂rk‖) = 0. (4.28)

So, we have from rk = r̂k + Ad̃k−1
x , ‖dkx‖ ≤ ‖̃dkx‖ + ‖̂dkx‖ (4.27) and (4.28) that

lim
k→∞ ‖rk‖ = 0 and lim

k→∞ ‖dkx‖ = 0, (4.29)

where rk and dkx are defined in (4.23). By (4.17), we have {Êk}∞k=1 is a monotoni-
cally nonincreasing sequence, which together with the assumption that {Êk} being
bounded from below implies limk→∞ Êk = F∗ for some F∗. Then, it follows from
the definition of Ek , (4.27) and (4.29) that (4.24) holds.

Now, by direct calculation, we have

∂xLβ(wk) = ∂xL(wk) + βATrk = ∇ f (xk) − ATλk + βATrk

= ∇xLβ (̂xk−1, yk,λk−1) − ATdk−1
λ + (∇ f (xk) − ∇ f (̂xk−1)),

∂yLβ(wk) = ∂yL(wk) + βBTrk = ∂yg(yk) − BTλk + βBTrk

= ∂yLβ(xk−1, yk,λk−1) − BT(dk−1
λ − βAdk−1

x ),

∂λLβ(wk) = ∂λL(wk) = −rk . (4.30)

Then, it follows from (3.4), (3.6), (4.27) and (4.29) that (4.25) holds. In addition,
for any limiting point w∗ of {wk}, it follows from (4.25) and the definition of the
limiting-subdifferential ∂L(w∗) that (4.22) holds. Hence, w∗ is a stationary point of
(1.1). ��

From Theorem 4.2 and (4.28), we can see that for any limiting stationary point w∗
of {wk}, we have L(x∗, y∗,λ∗) = F(x∗, y∗) = f (x∗) + g(y∗) = F∗. In addition, we
can observe from (4.26) that

min
k∈{1,...,K }

{
‖̃dk−1

x ‖2 + ‖̂dkx‖2 + ‖dky‖2 + ‖̂rk+1‖2
}

= O(1/K ),
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which together with (3.4) and (3.6) implies

min
k∈{1,...,K }

{
dist(0, ∂L(wk))

}
= O(1/

√
K ).

In Theorem 4.2, we assume the parameters in Algorithm 3.1 are chosen such that
the potential energy sequence {Êk} is uniformly bounded from below. The follow-
ing theorem gives a sufficient condition to ensure the uniform lower bound of {Êk},
which in turn also implies the uniform lower bound of {Ek} since limk→∞ ‖̂dk‖ =
limk→∞ ‖̃dk‖ = 0.

Theorem 4.3 Suppose there exists a constant β > 0 such that

inf

{

f (̂xk−1) + g(yk) + β

2
‖ Âxk−1 + Byk − b‖2

}

=: P > −∞. (4.31)

Then, under the conditions of Theorem 4.1 and β ≥ β, we have Êk ≥ P for all k ≥ 1.

Proof Since β ≥ β, it follows from λk = λk−1 − sβ( Âxk−1 + Byk − b) and (4.31)
that

Lβ(ŵk) = Lβ (̂xk−1, yk,λk)

≥ f (̂xk−1) + g(yk) − (λk)T( Âxk−1 + Byk − b) + β

2
‖ Âxk−1 + Byk − b‖2

≥ P + 1

sβ
(λk)T(λk − λk−1)

= P + 1

2sβ

(
‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2

)
.

Hence, by the definition of Êk in (4.13) and the above inequality, we have

∞∑

k=1

(
Êk − P

) ≥
∞∑

k=1

(Lβ(ŵk) − P
) ≥ − 1

sβ
‖λ0‖2. (4.32)

By Theorem 4.1, {Êk}∞k=1 is monotonically decreasing. So, if there exists a k ≥ 1 such

that Êk < P , we will have Êk < P for all k > k, which implies
∑∞

k=1

(
Êk − P

) =
−∞. This will contradict (4.32). Hence, we have Êk ≥ P for all k. ��

Remark 4.1 The condition (4.31) in Theorem 4.3 is obviously satisfied if

inf f (x) + g(y) + β

2
‖Ax + By − b‖2 > −∞ (4.33)
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for all x and y. And in many applications, the function F(x, y) = f (x) + g(y) is
uniformly bounded from below and therefore, (4.33) holds. For example, in statisti-
cal learning both the graph-guided fused lasso model [42] and the smoothly clipped
absolute deviation (SCAD) model [66] have nonnegative objective function value.

4.3 Linear convergence rate

In this subsection, we discuss the linear convergence of {Ek} and {wk} under proper
conditions. Let �∗ be the set of all stationary points of the problem (1.1) satisfying
(4.22), i.e.,

�∗ = {(x∗, y∗,λ∗) : ATλ∗ = ∇ f (x∗), BTλ∗ ∈ ∂g(y∗), Ax∗ + By∗ = b}.

Note that �∗ is a closed set. In the following, let us denote w∗ = (x∗, y∗,λ∗) ∈ �∗.
For studying linear convergence, we need the following additional assumption.

Assumption 4.3 (a) For any ξ ≥ infw Lβ(w), there exist ε > 0 and κ > 0 such that

dist(w,�∗) ≤ κdist(0, ∂Lβ(w)),

whenever dist(0, ∂Lβ(w)) ≤ ε and Lβ(w) ≤ ξ .
(b) �∗ is nonempty and there exists ω∗ > 0 such that ‖w1 −w2‖ ≥ ω∗ whenever w1,
w2 ∈ �∗ and F(x1, y1) �= F(x2, y2).
(c) Function g is locally weakly convex near

�∗
y := {y : there exist x and λ such that (x, y,λ) ∈ �∗},

that is, there exist ε, σ > 0 such that for any y1, y2 with dist(y1,�∗
y) ≤ ε,

dist(y2,�∗
y) ≤ ε and ‖y1 − y2‖ ≤ ε and for any ν ∈ ∂g(y2), it has

g(y1) ≥ g(y2) + 〈ν, y1 − y2〉 − σ‖y1 − y2‖2.

We have the following comments on Assumption 4.3. Assumption 4.3 (a) is a local
error bound condition and [57, Lemma 7] provides certain sufficient conditions to
ensure this assumption when analyzing linear convergence rate of a nonconvex algo-
rithm. Similar local error bound conditions have been often used in the convergence
rate analysis of many algorithms [7, 45, 50, 51, 58, 62]. Assumption 4.3 (b) essentially
requires that the isocost surface of F restricted on�∗ are properly separated. For more
examples and discussions on functions satisfying the error bound conditions and the
isocost properties, one may refer to references [57, 58, 62, 70]. Assumption 4.3 (c)
requires that g is locally weakly convex near the projection of the stationary point set
� onto the y-coordinates. Convex functions and Lipschitz continuously differential
functions obviously satisfies this requirement. For more properties on weakly convex
functions as well as its relations to lower-C2 functions, one may refer to references [1,
52, 53, 59].
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We now give the following linear convergence theorem on the energy sequence
{Ek}. The linear convergence of energy sequence {Êk} can be similarly proved.

Theorem 4.4 Suppose the conditions in Theorem 4.2 and Assumption 4.3 hold. Then,
for the sequence {wk} generated by Algorithm 3.1, we have

(i) limk→∞ dist(wk,�∗) = 0;
(ii) if {wk} has at least one cluster point, then for all k sufficiently large,

0 ≤ Ek+1 − F∗ ≤ θ(Ek − F∗), (4.34)

where θ ∈ (0, 1) is some constant, Ek is defined in (4.13) and F∗ = limk→∞ Ek

is defined in (4.24).

Proof By (4.24) and (4.25), there exists a ζ ≥ infw Lβ(w) such that Lβ(wk) ≤ ζ

for all k and limk→∞ dist(0, ∂Lβ(wk)) = 0. Hence, conclusion (i) follows from
Assumption 4.3 (a) with ξ = ζ .

We now prove conclusion (ii). For any iterate wk , let us define awk ∈ �∗ such that
dist(wk,�∗) = ‖wk − wk‖. Since �∗ is closed, such wk exists. Then, by conclusion
(i), we have

lim
k→∞ ‖wk − wk‖ = 0. (4.35)

In addition, we have from (4.27) and ‖wk −wk−1‖ ≤ ‖̃dk−1
x ‖ + ‖̂dk−1

x ‖ + ‖dk−1
y ‖ +

‖dk−1
λ ‖ that

lim
k→∞ ‖wk − wk−1‖ = 0. (4.36)

Therefore, we have from ‖wk−wk−1‖ ≤ ‖wk−wk‖+‖wk−wk−1‖+‖wk−1−wk−1‖,
(4.35) and (4.36) that

lim
k→∞ ‖wk − wk−1‖ = 0.

So, by Assumption 4.3 (b) and wk ∈ �, there exists a constant F
∗
such that

Lβ(wk) = Lβ(xk, yk,λ
k
) = F(xk, yk) = F

∗
(4.37)

for all k sufficiently large. Now, suppose {wk} has a cluster pointw∗, i.e., there exists a
subsequence {wki } converging to w∗. Then, we have from Theorem 4.2 that w∗ ∈ �,
and in addition, by (4.35), we have

lim
i→∞ ‖wki − w∗‖ ≤ lim

i→∞
(‖wki − wki ‖ + ‖wki − w∗‖) = 0.

Hence, we have from (4.37),w∗ ∈ � andAssumption 4.3 (b) again thatLβ(w∗) = F
∗
.

So, by the lower semicontinuity of the function Lβ(·), we have

F
∗ = Lβ(w∗) ≤ lim

i→∞Lβ(wki ) = F∗, (4.38)

where F∗ = limk→∞ Ek = limk→∞ Lβ(wk) is defined in Theorem 4.2.
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By the definition of Lβ(x, y,λ) in (1.3) and the update of λk in Algorithm 3.1, we
have

Lβ (̂xk−1, yk,λk) − Lβ (̂xk−1, yk,λ) = 1

sβ
(λ − λk)T(λk−1 − λk), (4.39)

Lβ (̂xk−1, yk,λ) − Lβ (̂xk−1, y,λ) = g(yk) − g(y) + λTB(y − yk) (4.40)

+β

2

(
‖ Âxk−1 + Byk − b‖2 − ‖ Âxk−1 + By − b‖2

)
,

and

Lβ (̂xk−1, y,λ) − Lβ(x, y,λ) = f (̂xk−1) − f (x) + λTA(x − x̂k−1)

+β

2

(
‖ Âxk−1 + By − b‖2 − ‖Ax + By − b‖2

)
. (4.41)

Then, by setting (x, y,λ) = wk in (4.39), (4.40) and (4.41), for all k sufficiently large,
we have from (4.37) and (4.38) that

Lβ (̂xk−1, yk,λk) − F∗

≤ Lβ (̂xk−1, yk,λk) − F
∗ = Lβ (̂xk−1, yk,λk) − Lβ(xk, yk,λ

k
)

≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) + L

2
‖xk − x̂k−1‖2

+ 1

2s2β
‖dk−1

λ ‖2 + g(yk) − g(yk) + 〈BTλ
k
, yk − yk〉, (4.42)

where the inequality comes from Lipschitz continuity of f , ATλ
k = ∇ f (xk), Axk +

Byk = b and dk−1
λ = −sβ r̂k . From (3.4), there exists a ξ ky ∈ ∂yLβ(xk−1, yk,λk−1),

i.e.,
νk := ξ ky + BTλk−1 − βBT(Axk−1 + Byk − b) ∈ ∂g(yk)

with ‖ξ ky ‖ ≤ cyβ‖dk−1
y ‖. So, we have

‖νk − BTλ
k‖ ≤ ‖ξ ky ‖ + ‖BT(λk−1 − λ

k
)‖ + β‖BT(Axk−1 + Byk − b)‖

≤ cyβ‖dk−1
y ‖ + ‖B‖(‖dk−1

λ ‖ + ‖λk − λ
k‖) + β‖B‖(‖̂rk‖ + ‖Ad̂k−1

x ‖).
(4.43)

Now, by (4.35), we have limk→∞ ‖yk − yk‖ = 0 and limk→∞ dist(yk,�y) = 0.
Hence, it follows from Assumption 4.3 (c) that

g(yk) ≥ g(yk) + 〈νk, yk − yk〉 − σ‖yk − yk‖2
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for all k sufficiently large, where σ > 0 is a constant, which implies

g(yk) − g(yk) + 〈BTλ
k
, yk − yk〉

= g(yk) − g(yk) + 〈νk, yk − yk〉 + 〈BTλ
k − νk, yk − yk〉

≤ σ‖yk − yk‖2 + ‖BTλ
k − νk‖‖yk − yk‖.

Hence, by (4.42), (4.43),‖xk−x̂k−1‖2 ≤ 2
(‖xk−xk‖2+‖̃dk−1

x ‖2) anddk−1
λ = −sβ r̂k ,

there exit two constants c1 > 0 and c2 > 0 such that

Lβ (̂xk−1, yk , λk) − F∗ ≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) + L

2
‖xk − x̂k−1‖2

+ 1

2s2β
‖dk−1

λ ‖2 + σ‖yk − yk‖2 + ‖BTλ
k − νk‖‖yk − yk‖

≤ c1
(‖̂dk−1

x ‖2 + ‖dk−1
y ‖2 + ‖dk−1

λ ‖2 + ‖̃dk−1
x ‖2) + c2‖wk − wk‖2

(4.44)

for all k sufficiently large. By (3.4), (3.6), (4.30), dk−1
λ = −sβ r̂k , rk = r̂k + Ad̃k−1

x ,
and dk−1

x = d̃k−1
x + d̂k−1

x , we have

dist(0, ∂Lβ(wk))

≤ ‖∇xLβ (̂xk−1, yk,λk−1) − ATdk−1
λ ‖ + ‖∇ f (xk) − ∇ f (̂xk−1)‖ + ‖rk‖

+dist
(
BT(dk−1

λ − βAdk−1
x ), ∂yLβ(xk−1, yk,λk−1)

)

≤ cxβ(‖̂dk−1
x ‖ + ‖dk−1

y ‖) + ‖ATdk−1
λ ‖ + cyβ‖dk−1

y ‖ + ‖BT(dk−1
λ − βAdk−1

x )‖
+L ‖̃dk−1

x ‖ + 1

sβ
‖dk−1

λ ‖ + ‖Ad̃k−1
x ‖

≤ c3(‖̂dk−1
x ‖ + ‖dk−1

y ‖ + ‖dk−1
λ ‖ + ‖̃dk−1

x ‖),

where c3 = max
{
(cx + ‖BTA‖)β, (cx + cy)β, 1/(sβ) + ‖A‖ + ‖B‖, L + ‖A‖ +

β‖BTA‖} > 0. So, by Assumption 4.3 (a), we have

‖wk − wk‖ = dist(wk,�) ≤ κdist(0, ∂Lβ(wk))

≤ κc3
(‖̂dk−1

x ‖ + ‖dk−1
y ‖ + ‖dk−1

λ ‖ + ‖̃dk−1
x ‖)

for all k sufficiently large, which together with (4.44) gives

Lβ (̂xk−1, yk,λk) − F∗ ≤ c
(‖̂dk−1

x ‖2 + ‖dk−1
y ‖2 + ‖dk−1

λ ‖2 + ‖̃dk−1
x ‖2), (4.45)

where c = c1 + 4c2c23κ
2. Hence, defining dk := ‖̂dkx‖2 + ‖dky‖2 + ‖dkλ‖2 + ‖̃dkx‖2, it

follows from the definition of Ek in (4.13), (3.8) and (4.45) that

Ek+1 − F∗ ≤ Lβ (̂xk, yk+1,λk+1) − δβ‖xk+1 − x̂k‖2 − F∗ + (1 + τ)ψ2(s)

sβσA
‖ATdkλ‖2
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+8(1 + τ)ψ1(s)β

sσA

(
c2x(‖̂dkx‖2 + ‖dky‖2) + (L/β)2‖̃dkx‖2

)

≤ γ dk, (4.46)

where γ = c+max
{
(8(1+τ)ψ1(s)(c2xβ

2+ L2), (1+τ)‖A‖2ψ2(s)
}
/(sβσA). Addi-

tionally, we have by (4.17), Dx � 0 and Dy � 0 that Ek ≥ F∗ for all k ≥ 1 and

Ek+1 ≤ Ek − γ dk, (4.47)

where γ = min{ τβ
2 σDx ,

τβ
2 σDy ,

τ
sβ , τβ} > 0, σDx > 0 and σDy > 0 are the smallest

eigenvalue of Dx and Dy, respectively. Thus, by (4.46) and (4.47), for k sufficiently
large, we have 0 ≤ Ek+1 − F∗ ≤ θ(Ek − F∗), where θ = γ /(γ + γ ) ∈ (0, 1). ��

Based on the linear convergence result in the previous theorem, we can establish
the following linear convergence of the sequence {wk}.
Theorem 4.5 Suppose the conditions in Theorem 4.2 and Assumption 4.3 hold. If the
sequence {wk} generated by Algorithm 3.1 has one cluster point, then {wk} converges
R-linearly to a stationary point of the problem (1.1).

Proof We have from Dx, Dy � 0, (4.17) and Ek ≥ F∗ for all k ≥ 1 that

‖̂dkx‖2 ≤ 2

τβσDx

(Ek − Ek+1) ≤ M1(E
k − F∗),

‖dky‖2 ≤ 2

τβσDy

(Ek − Ek+1) ≤ M1(E
k − F∗),

‖dkλ‖2 ≤ sβ

τ
(Ek − Ek+1) ≤ M1(E

k − F∗),

‖̃dkx‖2 ≤ 1

τβ
(Ek − Ek+1) ≤ M1(E

k − F∗) (4.48)

where M1 = max{2/(τβσDx), 2/(τβσDy), sβ/τ, 1/(τβ)}. In addition, by Theo-
rem 4.4, there exists a constant M2 > 0 such that 0 ≤ Ek − F∗ ≤ M2θ

k for all
k ≥ 0, where θ ∈ (0, 1) is the constant in (4.34). Hence, it follows from (4.48) that

‖̂dkx‖ ≤ Mqk, ‖dky‖ ≤ Mqk, ‖dkλ‖ ≤ Mqk and ‖̃dkx‖ ≤ Mqk,

where M = √
M1M2 and q = √

θ ∈ (0, 1). Therefore, we have

‖wk+1 − wk‖ ≤ ‖̂dkx‖ + ‖̃dkx‖ + ‖dky‖ + ‖dkλ‖ ≤ 4Mqk .

Then, for any m2 > m1 ≥ 1, we have

‖wm2 − wm1‖ ≤
m2−1∑

k=m1

‖wk+1 − wk‖ ≤ 4M

1 − q
qm1 ,
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which implies the sequence {wk} is a Cauchy sequence and hence convergent. Suppose
{wk} converges to w∗. Letting m2 → ∞ in the above inequality, we have

‖w∗ − wm1‖ ≤ 4M

1 − q
qm1 ,

which shows {wk} converges R-linearly to w∗. Finally, Theorem 4.2 ensures that w∗
is a stationary point of (1.1). ��

5 Inexact subproblem solution

Depending on various (e.g. smooth, convex and sparse) properties of the function g,
one can design different algorithms to solve the y-subproblem (3.1) inexactly to find
yk+1 satisfying the conditions (3.3) and (3.4). Here, in this subsection, we just propose
a gradient method with extrapolation to find an inexact solution satisfying (3.5) and
(3.6) of the x-subproblem. Note that the x-subproblem (3.2) is equivalent to

min
x∈Rnx

�k(x) := f (x) + β

2
‖x − xk‖Dk

x
+ xTpk + β

2
‖x − xk‖2AT A

= hk(x) + φk(x), (5.1)

where pk = −AT
[
λk − β(Axk + Byk+1 − b)

]
, φk(x) = xTpk + β

2 ‖x − xk‖2
AT A

and

hk(x) = f (x) + β

2
‖x − xk‖Dk

x
. (5.2)

In this section, we make the following assumptions.

Assumption 5.1 (a) The optimal value of the x-subproblem is bounded from below,
i.e., �∗ = minx∈Rnx �k(x) > −∞, where the function �k is defined in (5.1).
(b) There exist constants L1 > 0 and L2 > 0 such that for any z1, z2 ∈ R

nx , it holds

− L1

2
‖z1 − z2‖2 ≤ f (z2) − f (z1) − 〈∇ f (z1), z2 − z1〉 ≤ L2

2
‖z1 − z2‖2.

Obviously, by (4.1) we have max{L1, L2} ≤ L .

Assumption 5.2 The proximal matrix Dk
x chosen in the x-subproblem is positive def-

inite and upper bounded, i.e.,

ηI � Dk
x � ηI for some η ≥ η > 0. (5.3)

Under Assumptions 5.1 and 5.2, it follows from the definition hk in (5.2) that

− μ

2
‖z1 − z2‖2 ≤ hk(z2) − hk(z1) − 〈∇hk(z1), z2 − z1〉 ≤ �

2
‖z1 − z2‖2 (5.4)
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Initialization: Choose � > �; Set x̆1 = x1 = xk and τ = 1 −
√

�−μ
�+μ

.

For t = 1, 2, 3, . . .
Set βt = max{βt , τ }, where βt = 2/(t + 1).
x̂t = βt x̆t + (1 − βt )xt.
Set γt = βt�(t + 1)/t.

x̆t+1 = argmin
{
〈∇h(̂xt ), x〉 + γt

2 ‖x − x̆t‖2 + φ(x)
}
.

xt+1 = βt x̆t+1 + (1 − βt )xt.
end

Algorithm 5.1 A unified proximal gradient (UPG) method for solving x-subproblem (5.1)

for any z1, z2 ∈ R
nx , where μ = max{L1 − βη, 0} and � = L2 + βη.

Since we focus on solving the x-subproblem, where the outer iteration number
k is fixed, for notation simplicity, in the following of this section we simply denote
�k, hk, φk and�k as�, h, φ and�, respectively. Then, our algorithm for solving (5.1)
is described in Algorithm 5.1, which is a generalization of the accelerated gradient
method proposed in [33] for solving convex subproblems of ADMM to the case when
f is not necessarily convex.

Theorem 5.1 Suppose Assumptions 5.1 and 5.2 hold. Then, for the sequence {xt }
generated by Algorithm 5.1, we have

lim
t→∞ ‖∇�(xt )‖ = lim

t→∞ ‖∇�(̂xt )‖ = 0. (5.5)

Proof First, apparently, by the definitions in (5.4), we have � > μ ≥ 0 since η > 0.
When μ = 0, we have h is a convex function, and it follows from Algorithm 5.1 that
τ = 0 and βt = β t for all t ≥ 1. In this case, Algorithm 5.1 will just reduce to a
standard accelerated gradientmethod (see algorithmsdeveloped in [33, 34]) for solving
convex composite optimization which guarantees limt→∞ �(xt ) = limt→∞ �(̂xt ) =
�∗ > −∞. Hence, (5.5) holds.

In the following, we discuss the convergence of Algorithm 5.1 when μ > 0. From
the updates of xt+1 and x̂t , we have

βt (x̆t+1 − x̂t ) + (1 − βt )(xt − x̂t ) = xt+1 − x̂t = βt st , (5.6)

where st = x̆t+1 − x̆t . Then, by (5.4) and (5.6), the following relations hold

h(xt+1) ≤ h(̂xt ) + 〈∇h(̂xt ), xt+1 − x̂t 〉 + �

2
‖xt+1 − x̂t‖2

= h(̂xt ) + 〈∇h(̂xt ), xt − x̂t 〉 + 〈∇h(̂xt ), xt+1 − xt 〉 + �β2
t

2
‖st‖2

≤ h(xt ) + μ

2
‖xt − x̂t‖2 + 〈∇h(̂xt ), xt+1 − xt 〉 + �β2

t

2
‖st‖2 . (5.7)
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Furthermore, by (5.6), (5.7), xt+1 = βt x̆t+1+(1−βt )xt and the convexity of function
φ, we have

�(xt+1) = h(xt+1) + φ(xt+1)

≤ βt
[
h(xt ) + 〈∇h(̂xt ), x̆t+1 − xt

〉 + φ(x̆t+1)
] + (1 − βt )

[
h(xt ) + φ(xt )

]

+μ

2
‖xt − x̂t‖2 + �β2

t

2
‖st‖2

= βt

[
h(xt ) + 〈∇h(̂xt ), x̆t+1 − xt 〉 + γt

2
‖st‖2 + φ(x̆t+1)

]

+(1 − βt )�(xt ) + μ

2
‖xt − x̂t‖2 + �β2

t − γtβt

2
‖st‖2. (5.8)

Now, it follows from

x̆t+1 = argmin
{
〈∇h(̂xt ), x〉 + γt

2
‖x − x̆t‖2 + φ(x)

}

and st = x̆t+1 − x̆t that

〈∇h(̂xt ), x̆t+1 − xt 〉 + γt

2
‖st‖2 + φ(x̆t+1)

≤ γt

2

( ‖xt − x̆t‖2 − ‖xt − x̆t+1‖2
) + φ(xt ) − 1

2
‖xt − x̆t+1‖2M , (5.9)

where M = βATA and

∇h(̂xt ) + γt st + ∇φ(x̆t+1) = 0. (5.10)

By (5.8) and (5.9), we have

�(xt+1) ≤ βt

[
h(xt ) + γt

2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2

)
+ φ(xt ) − 1

2
‖xt − x̆t+1‖2M

]

+(1 − βt )�(xt ) + μ

2
‖xt − x̂t‖2 + �β2

t − γtβt

2
‖st‖2

≤ �(xt ) + μ

2
‖xt − x̂t‖2 + βtγt

2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2

)

−βt

2
‖xt − x̆t+1‖2M − (� − �)β2

t

2
‖st‖2, (5.11)

where the last inequality follows from

γtβt − �β2
t = β2

t �(t + 1)/t − �β2
t ≥ (� − �)β2

t .

Now, note that

x̆t − xt = 1

βt
(̂xt − xt ) and x̆t+1 − xt = 1

βt
(xt+1 − xt ). (5.12)
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Then, we have from (5.11) that

�(xt+1) ≤ �(xt ) + μ + γt/βt

2
‖xt − x̂t‖2 − γt/βt

2
‖xt+1 − xt‖2

−βt

2
‖x̆t+1 − xt‖2M − (� − �)β2

t

2
‖st‖2. (5.13)

For t ≥ 2, by (5.12), we obtain

x̂t − xt = βt (x̆t − xt ) = βt (x̆t − xt−1 + xt−1 − xt )

= βt

(
1

βt−1
(xt − xt−1) + xt−1 − xt

)

= θt (xt − xt−1), (5.14)

where θt = βt
βt−1

(1 − βt−1). In addition, by defining β0 = 1 and x0 = x1, we can see
(5.14) holds for all t ≥ 1. Hence, for t ≥ 1 it follows from (5.13) that

�(xt+1) ≤ �(xt ) + (γt/βt + μ)θ2t

2
‖xt − xt−1‖2 − γt/βt

2
‖xt+1 − xt‖2

−βt

2
‖x̆t+1 − xt‖2M − (� − �)β2

t

2
‖st‖2. (5.15)

Since γt/βt = �(t + 1)/t , we have

γt/βt − γt+1/βt+1 = �/(t2 + t) > 0.

So, we have from (5.15) that

�(xt+1) + ηt+1

2
‖xt+1 − xt‖2

≤ �(xt ) + ηt

2
‖xt − xt−1‖2 − γt+1/βt+1 − ηt+1

2
‖xt+1 − xt‖2

−βt

2
‖x̆t+1 − xt‖2M − (� − �)β2

t

2
‖st‖2, (5.16)

where ηt = (γt/βt + μ)θ2t .
Now, by the choice of βt in Algorithm 5.1 and μ > 0, we have

βt = max{β t , τ }, where τ = 1 − √
(� − μ) / (� + μ) > 0. (5.17)

So, for all t ≥ 1, we have βt/βt−1 ≤ 1 and

θt = βt/βt−1(1 − βt−1) ≤ 1 − βt−1 ≤ √
(� − μ) / (� + μ) < 1. (5.18)
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Then, by (5.18) and γt/βt = �(t + 1)/t > �, for all t ≥ 1, we have

γt/βt − ηt = γt/βt − (γt/βt + μ)θ2t = γt/βt (1 − θ2t ) − μθ2t

≥ �(1 − θ2t ) − μθ2t = � − (� + μ)θ2t ≥ � − (� + μ)
� − μ

� + μ
= μ.

(5.19)

Hence, it follows from (5.16), (5.17) and (5.19) that

�(xt+1) + ηt+1

2
‖xt+1 − xt‖2

≤ �(xt ) + ηt

2
‖xt − xt−1‖2 − μ

2
‖xt+1 − xt‖2

−βt

2
‖x̆t+1 − xt‖2M − (� − �)τ 2

2
‖st‖2 (5.20)

for all t ≥ 1. Since �(x) is bounded from below by Assumption 5.1, we can obtain
from (5.20), μ > 0, τ > 0 and � > � that

∞∑

t=t

‖xt − xt−1‖2 < ∞ and
∞∑

t=t

‖x̆t+1 − x̆t‖2 =
∞∑

t=t0

‖st‖2 < ∞,

which implies

lim
t→∞ ‖xt+1 − xt‖ = 0 and lim

t→∞ ‖x̆t+1 − x̆t‖ = 0. (5.21)

Since xt+1 − x̂t = βt (x̆t+1 − x̆t ), we have from (5.21) that limt→∞ ‖xt − x̂t‖ = 0.
Then, we have from (5.12) that

lim
t→∞ ‖x̆t − xt‖ ≤ 1/τ lim

t→∞ ‖̂xt − xt‖ = 0. (5.22)

Therefore, (5.5) follows from (5.10), (5.21), (5.22) and the Lipschitz continuity of∇ f
and ∇φ. ��

By Theorem 5.1, any cluster point of {xt } will be a stationary point of the x-
subproblem (5.1). Now suppose lim inf t→∞ ‖xt − xk‖ > 0. Otherwise, xk is a
stationary point of the x-subproblem. We now discuss that the sequence {xt } gen-
erated by Algorithm 5.1 will essentially satisfy the conditions (3.5) and (3.6). First,
since ∇�(x) = ∇xLβ(x, yk+1,λk) + βDk

x(x − xk) and limt→∞ ∇�(xt ) = 0. the
condition (3.6) will be satisfied by setting x̂k = xt for any cx > η and all t sufficiently
large. Second, since x0 = x1 = xk , we have from (5.16) that

�(̂xk) = �(xt ) ≤ �(x1) = �(xk)
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for t ≥ 1. Note that �(̂xk) ≤ �(xk) is equivalent to

β

2
‖̂xk − xk‖Dk

x
+ Lβ (̂xk, yk+1,λk) ≤ Lβ(xk, yk+1,λk).

So, with the choice of Dk
x satisfying (5.3), the condition (3.5) holds with Dx = ηI by

setting x̂k = xt for all t ≥ 1.

6 Numerical experiments

In this section, we would like to evaluate the performance of Algorithm 3.1 on a sparse
optimization problem and a nonconvex quadratic programming problem, where the
Assumption 4.3 is known to be satisfied [50, 51, 57]. First, our convergence theory
requires that the parameters in Algorithm 3.1 are chosen such that (4.14) and (4.15)
hold and {Êk} defined in (4.13) is bounded from below. However, the condition (4.14)
depends on the Lipschitz constant L , which is usually unknown for general nonlinear
function f and a poor estimate of its value may severely deteriorate the algorithm
performance. On the other hand, a closer inspection on the convergence proof (see
inequality (4.12)) reveals that the convergence results still hold as long as

‖∇ f (̂xk) − ∇ f (̂xk−1)‖ ≤ L
(‖̂dk‖ + ‖̃dk−1‖) (6.1)

holds for all k sufficiently large. Here, L may be some constant smaller than the
true Lipschitz constant. Hence, in numerical experiments, we gradually estimate the
Lipschitz constant by starting with some L0 > 0 and for k = 0, 1, . . ., update Lk as

Lk+1 =
{

ρLk, if ‖∇ f (̂xk) − ∇ f (̂xk−1)‖ > Lk
(‖̂dk‖ + ‖̃dk−1‖),

Lk, otherwise,
(6.2)

where ρ > 1 is some parameter. By this way, since ∇ f is Lipschitz continuous, we
see that Lk can only be increased finite number of times. Hence, Lk will remain as
a constant L such that (6.1) will hold for all k sufficiently large. Under the above
choice of Lk , we dynamically update β by βk = Lk/cβ at the k-th iteration for some
cβ ∈ (0, 1). We require that L0 and cβ are chosen such that for all β ≥ β0 = L0/cβ ,
the functions Lk

y(·) and Lk
y(·) are bounded from below and (4.33) holds with β = β0.

Hence, we can always solve the subproblems inexactly as required by Algorithm 3.1,
and {Êk} (also {Ek}) will be bounded from below by Theorem 4.3. So, to ensure global
convergence, by Theorem 4.2 and the above setting, we only need to require cβ and
the parameters in Algorithm 3.1 are chosen such that

ϕ(τ)

2
Dk

x − ψ1(s)
[
2(cβ + cx)2 + 8c2x

]

sσA
I � 0,

ϕ(τ )

16
Dk

y − ψ1(s)c2x
sσA

I � 0 and
δ − τ

1 + τ
− 8ψ1(s)c2β

sσA
≥ 0 (6.3)
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for some τ ∈ (0, δ), where ϕ(τ) = (1 − τ)/(1 + τ). In our numerical experiments,
the parameters are chosen as

cβ = cx = 1

14
, Dk

x = Dk
y = 1

6
I, s = 1, ρ = 1.01, η = 1.2, and δ = 0.1.

The above choices of parameters satisfy the condition (6.3) with τ sufficiently small
in (0, δ), since σA = 1 in our experiments. Furthermore, all of the forthcom-
ing experiments are implemented in MATLAB R2019b (64-bit) with starting point
(x0, y0,λ0) = (0, 0, 0) and performed on a PC with Windows 10 operating system,
an Intel i7-8565U CPU and 16GB RAM.

6.1 The SCAD penalty problem

Recall the following smoothly clipped absolute deviation (SCAD) penalty problem
from statistical learning [20, 66]:

min
x∈Rn

F(x) := 1

2
‖Hx − u‖2 +

n∑

i=1

pκ (|xi |) ,

where H ∈ R
m×n,u ∈ R

m and the nonconvex SCAD penalty pκ(·) is defined as

pκ(θ) :=

⎧
⎪⎨

⎪⎩

κθ, θ ≤ κ,
−θ2+2cκθ−κ2

2(c−1) , κ < θ ≤ cκ,

(c+1)κ2

2 , θ > cκ,

with c > 2 and κ > 0 being the knots of the quadratic spline function. Clearly, the
above problem can be reformulated as a special case of (1.1):

min
x∈Rn

1

2
‖Hx − u‖2 +

n∑

i=1

pκ (|yi |) subject to x − y = 0. (6.4)

Then, (6.4) is in the format of (1.1) with f (x) = 1
2‖Hx−u‖2, g(y) = ∑n

i=1 pκ (|yi |),
A = I, B = −I and b = 0. Applying I-ADMMAlgorithm 3.1 andUPGAlgorithm 5.1
with Dk

y = ηyI and Dk
x = ηxI, we have the following updates:

⎧
⎨

⎩

yk+1 = argminy∈Rn
∑n

i=1 pκ (|yi |) + (1+ηy)β

2

∥
∥
∥y − xk+ηyyk−λk/β

1+ηy

∥
∥
∥
2
,

x̆t+1 = 1
γt+β

{
λk + β(ηxxk + yk+1) − (HTH + βηxI)̂xt + γt x̆t + HTu

}
,

where the y-subproblem has a closed form solution [20, 66].
We choseβ0 = L0/cβ = 1 in this experiment, which ensures that the x-subproblem

is bounded frombelow since the function f here is nonnegative.We compare I-ADMM
with several well-known algorithms for solving the SCAD penalty problem including
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Fig. 1 Numerical comparison of different algorithms for the SCAD penalty problem
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NL-ADMM [60], P-ADMM [47], BP-ADMM (Algorithm 2, [11]), S-ADMM [45]
and IBG-ADMM [66], where

• NL-ADMM uses the tuned value β = 300 and s = 1.6 as the dual stepsize;
• P-ADMM uses β = 5.1L as the penalty value according to [47, Example 1];
• BP-ADMM uses tk = β which is 1.2 times the maximal value satisfying the
involved conditions (14) and (15) in [11] (also see [11, Assumption 1]);

• S-ADMM uses the tuned stepsizes (α, θ) = (0.05, 1.2) and the penalty parame-
ter is chosen to be larger than the maximal eigenvalue of the involved quadratic
function (see [45, Assumption 3.1]);

• IBG-ADMM [66] solves (6.4) by introducing variable y = Hx − u (see [66,
Section 4.2] for more details on the implementation and parameter settings).

Same as those used in [66], the parameters in function pκ is set as (c, κ) = (3.7, 0.1).
Wefirst generated amatrixH with each component Hi j ∼ N (0, 1).We thennormalize
each column of H and take it as H . We take x∗ ∈ R

m to be a random sparse vector
with the density 100/n and then set u = Hx∗ + ε, where ε ∼ N (0, 100/n). The
following optimality error Opt(k) := max

{‖xk − yk‖, ‖HT(Hxk − u) − λk‖} is
used for the iterates generated by different comparison algorithms, while a different
Opt(k) = max

{‖Hxk − yk − u‖, ‖yk + λk‖} is used for the iterates generated by
IBG-ADMM, since it solves the problem (6.4) in a different setup format.

Table 1 reports numerical results of the aforementioned comparison algorithms
when a certain CPU time budget is reached, where F(xk)(end) and Opt(end) denote
the function value and optimality error at the last iteration. Figure1 depicts the con-
vergence curves of |F(xk)− Fmin|/|Fmin| and Opt(k) versus CPU time, where Fmin is
the minimum of the objective values obtained by all the comparison algorithms. We
can see from Table 1 that I-ADMM performs significantly better than other compari-
son algorithms with respect to the iteration number and the objective function value,
and could always obtain a higher accurate solution in terms of optimality error. This
efficiency is due to the adaptive inexact subproblem solution, the expansion linesearch
step and the adaptive way for updating the Lipschitz constant in (6.2).

6.2 The nonconvex quadratic programming problem

In this subsection, we consider the following Nonconvex Quadratic Programming
(NQP) problem

min
(x,y)∈Rn×Rm

1

2
xTGx − gTx subject to Ax = y, v ≤ y ≤ u, eTy = c, (6.5)

where a symmetric matrix G ∈ R
n×n , A ∈ R

m×n , g ∈ R
n and v ≤ u ∈ R

m

are given matrices and vectors, respectively, e is the vector of ones and the scalar c
satisfies eTv ≤ c ≤ eTu. When A = I, the problem (6.5) will reduce to a quadratic
programming problemwith simplex constraints, which includes the example problems
in [62, Section 4.1] and has many applications. Note that since efficient projection on
the feasible set of (6.5), which is a polyhedron, is in general nontrivial, NQP is not
easily solved by the algorithms which require repeated projections on a polyhedron,
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Table 1 Numerical results of different algorithms for the SCAD penalty problem

Size CPU IBG-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 1857 2.404969 7.1530e−1

(1000,6000) 50 1033 2.779820 9.0591e−1

(2000,9000) 140 1076 3.334330 1.0787e+0

(3000,12000) 180 749 3.901173 1.2769e+0

Size CPU NL-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 2321 4.110444 5.3002e−1

(1000,6000) 50 2277 2.966996 6.2893e−1

(2000,9000) 140 1322 3.797333 9.6753e−1

(3000,12000) 180 883 5.445761 1.5238e+0

Size CPU P-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 2260 2.193902 4.5738e−4

(1000,6000) 50 1202 2.495977 1.6469e−3

(2000,9000) 140 1311 3.039743 8.2070e−6

(3000,12000) 180 868 3.500552 5.6349e−5

Size CPU BP-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 2271 2.193884 7.8562e−6

(1000,6000) 50 1185 2.495809 8.5903e−5

(2000,9000) 140 1301 3.039743 1.6709e−7

(3000,12000) 180 857 3.500550 2.3991e−6

Size CPU S-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 2360 2.193883 8.2222e−8

(1000,6000) 50 1213 2.495792 3.7610e−6

(2000,9000) 140 1340 3.039743 1.1609e−9

(3000,12000) 180 847 3.500550 6.3096e−8

Size CPU I-ADMM

(m,n) time(s) Iter F(xk )(end) Opt(end)

(500,3000) 20 843 2.193883 1.9621e−10

(1000,6000) 50 360 2.495790 7.1638e−10

(2000,9000) 140 440 3.039743 6.4663e−14

(3000,12000) 180 341 3.500550 1.8932e−12

Bold values indicates the smallest value in that categary
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Table 2 Numerical results of
different algorithms for solving
the NQP problem

Size CPU P-ADMM

n time(s) Iter F(xk )(end) Opt(end)

2000 200 24327 3.024108 3.0892e−2

3000 300 14641 1.119980 7.0825e−2

4000 400 11168 1.072323 1.4532e−1

5000 500 9045 0.985398 2.3115e−1

Size CPU BP-ADMM

n time(s) Iter F(xk )(end) Opt(end)

2000 200 18357 3.024114 3.7827e−2

3000 300 11786 1.119972 7.6823e−2

4000 400 8430 1.072409 1.7569e−1

5000 500 7328 0.985195 2.4323e−1

Size CPU S-ADMM

n time(s) Iter F(xk )(end) Opt(end)

2000 200 19603 3.024074 2.0892e−3

3000 300 14843 1.119909 3.6842e−2

4000 400 10069 1.072095 4.7554e−2

5000 500 9115 0.983785 1.3257e−1

Size CPU I-ADMM

n time(s) Iter F(xk )(end) Opt(end)

2000 200 8180 3.020470 3.7338e−4

3000 300 6296 1.119848 6.2395e−4

4000 400 3929 1.072086 5.1192e−5

5000 500 3987 0.983581 5.9107e−4

such as the proximal gradient method with extrapolation [62] or the projected gradient
methods [9, 32].

Note that the problem (6.5) can be also rewritten in the format of (1.1) as

min
(x,y)∈Rn×Rm

1

2
xTGx − gTx + δC(y) subject to Ax = y, (6.6)

where δC is the indicator function of the set C = {y ∈ R
m : v ≤ y ≤ u, eTy = c},

i.e., δC(y) = 0 if y ∈ C; δC(y) = ∞, otherwise. Applying I-ADMM Algorithm 3.1
and UPG Algorithm 5.1 to the problem (6.6) with Dk

y = ηyI and Dk
x = ηxI involves

solving the following subproblems:

yk+1 = arg min
y∈Rn

δC(y) + (1 + ηy)β

2
‖y − q‖2 and (

γt

β
I + ATA)x̆t+1 = b,
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Fig. 2 Numerical comparison of different algorithms for solving the NQP problem

where q := Axk+ηyyk−λk/β

1+ηy
and b := 1

β
ATλk + ηxxk + ATyk+1 − (ηxI + 1

β
G )̂xt +

1
β
(γt x̆t + g). Observe that the above y-subproblem, which needs projection on a

simplex, has no closed-form solution. Hence, we solve it inexactly by the method
developed in [16, 56] using the stopping criteria (3.3) and (3.4) with cy = 0.1. In
addition, when m � n, the Sherman-Morrison-Woodbury Formula should be used to
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solve x̆t+1 as

x̆t+1 = β

γt
b − β2

γ 2
t
AT

(
I + β

γt
AAT

)−1
Ab.

In our numerical experiments, A is always generated to be an orthogonal matrix, i.e.
ATA = I. Note that even for A being an orthogonal matrix, projection on the feasible
set of problem (6.5) is in general still nontrivial. Specifically, similar to the way of
generating the problem data in [62], we randomly generate G, g, A, and set v, u and
c by the following MATLAB codes:

D=randn(n); Z=zeros(n,n);
for i=1:n Z(i,i)=10*(rand(1)−0.1); end
G=D’*Z*D; g=randn(n,1); U=randn(n,n);
A=orth(U)’; u=10*ones(n,1); v=zeros(n,1); c=5;

We set β0 = L0/cβ = 2|min{λmin(G), 0}| + 1 to ensure that the x-subproblem is
bounded from below, where λmin(G) is the minimum eigenvalue of G. We compare
I-ADMMwith the aforementioned algorithms P-ADMM, BP-ADMMand S-ADMM.
The rest two algorithms IBG-ADMM and NL-ADMM are not compared since their
performance is much worse for solving this test problem. The numerical experi-
ment results including the number of iterations, the final objective function value
F(xk) and the final optimality error Opt(k) := max

(‖Axk − yk‖, ‖Gxk − g −
ATλk‖, ‖yk − PC(yk − λk)‖) along with problem dimension n are reported in
Table 2. Here, PC(·) denotes projection onto the convex set C. In Fig. 2, we also

plot |F(xk) − Fmin|/|Fmin|, Opt(k) and x_gap(k) := ‖xk−x∗‖
1+‖x∗‖ against the CPU time

with n = 2000, 3000, 4000, 5000 respectively, where Fmin is the minimum objective
value obtained by all the algorithms, and x∗ denotes the approximate optimal solution
obtained by I-ADMM under twice of the CPU time budget. From Table 2 and Fig. 2,
we can again see that I-ADMM converges much faster and obtains a higher accuracy
solution than other comparison algorithms under the same CPU time budget. Besides,
Fig. 2 clearly shows the linear convergence behavior of the optimality error Opt(k)
and the iteration error x_gap(k) generated by I-ADMM for solving the NQP problem
(6.5).

7 Conclusion

We have developed an inexact alternating direction method of multipliers with an
expansion line search step for solving a class of separable nonconvex and nonsmooth
structured optimization with linear constraints. This I-ADMM solves each subprob-
lem inexactly to an adaptive accuracy and allows a larger range of dual stepsize.
Under proper assumptions, the global convergence and linear convergence rate of I-
ADMM have been established. In addition, a unified proximal gradient method with
momentum acceleration is proposed to solve the smooth but possibly nonconvex sub-
problem inexactly. By allowing adaptive inexact subproblem solution, the expansion
linesearch step and the adaptive way for updating the Lipschitz constant, our pro-
posed I-ADMM performs significantly better than other state-of-the-art algorithms
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for solving some nonconvex quadratic programming problems and nonconvex sparse
optimization problems from statistical learning.

Data Availability The data for test problems in the paper is randomly generated and described in the paper.
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