
Journal of Scientific Computing (2025) 102:80
https://doi.org/10.1007/s10915-025-02802-7

Generalized Asymmetric Forward–Backward–Adjoint
Algorithms for Convex–Concave Saddle-Point Problem

Jianchao Bai1 · Yang Chen2 · Xue Yu3,4 · Hongchao Zhang5

Received: 1 April 2024 / Revised: 16 September 2024 / Accepted: 10 January 2025 /
Published online: 31 January 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
The convex–concave minimax problem, also known as the saddle-point problem, has
been extensively studied from various aspects including the algorithm design, convergence
condition and complexity. In this paper, we propose a generalized asymmetric forward–
backward–adjoint algorithm (G-AFBA) to solve such aproblembyutilizingboth the proximal
techniques and the extrapolation of primal-dual updates. Besides applying proximal primal-
dual updates, G-AFBA enjoys a more relaxed convergence condition, namely, more flexible
and possibly larger proximal stepsizes, which could result in significant improvements in
numerical performance. We study the global convergence of G-AFBA as well as its sublin-
ear convergence rate on both ergodic iterates and non-ergodic optimality error. The linear
convergence rate of G-AFBA is also established under a calmness condition. By different
ways of parameter and problem setting, we show that G-AFBA has close relationships with
several well-established or new algorithms. We further propose an adaptive and a stochastic
(inexact) versions of G-AFBA. Our numerical experiments on solving the robust principal
component analysis problem and the 3D CT reconstruction problem indicate the efficiency
of both the deterministic and stochastic versions of G-AFBA.

B Jianchao Bai
jianchaobai@nwpu.edu.cn

B Yang Chen
cy1202208@163.com

Xue Yu
xueyu_2019@ruc.edu.cn

Hongchao Zhang
hozhang@math.lsu.edu
https://math.lsu.edu/~hozhang

1 School of Mathematics and Statistics & MOE Key Laboratory for Complexity Science in
Aerospace, Northwestern Polytechnical University, Xi’an 710129, China

2 School of Mathematics and Statistics, Northwestern Polytechnical University & MIIT Key
Laboratory of Dynamics and Control of Complex Systems, Xi’an 710129, China

3 Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872,
China

4 Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beijing
100191, China

5 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-025-02802-7&domain=pdf
http://orcid.org/0000-0002-2394-8852

80 Page 2 of 33 Journal of Scientific Computing (2025) 102 :80

Keywords Saddle-point problem · Asymmetric forward–backward–adjoint algorithm ·
Convergence and complexity · Image processing

Mathematics Subject Classification 65K10 · 65Y20 · 90C25 · 94A08

1 Introduction

Consider the following generic convex–concave saddle-point problem

min
x∈X max

y∈Y L(x, y):= f (x) + 〈Kx, y〉 − g(y), (1.1)

where f : X → (−∞,∞] and g : Y → (−∞,∞] are proper lower semicontinuous convex
functions (not necessarily smooth), X and Y are finite-dimensional real Euclidean spaces,
K : X → Y is a bounded linear operator. Let K� denote the adjoint operator (or matrix
transpose) of K , f ∗ and g∗ denote the Fenchel conjugate [38] of f and g, respectively. Then,
(1.1) amounts to the following primal and dual problems:

min
x∈X f (x) + g∗(Kx) and min

y∈Y f ∗(−K�y) + g(y).

Due to these intrinsic relationships, the problem (1.1) covers a wide range of applications,
including machine learning, signal and image processing, economics, statistics, see e.g. [9,
12, 21, 24, 28, 40, 48, 51] and the references therein. Throughout this paper, the solution set
of (1.1) is assumed to be nonempty.

1.1 Notation

LetRn be the set of n-dimensional Euclidean space equipped with an inner product 〈·, ·〉 and
Euclidean norm ‖ · ‖ = √〈·, ·〉. Let I be the identity matrix and 0 be the zero matrix/vector.
Given a positive definite self-adjoint linear operator or symmetric matrix H , we denote
‖x‖H = √〈x, Hx〉 = √

x�Hx with the superscript � representing transpose. Denote the
Euclidean distance from x ∈ C to the closed convex set C by dist(x, C) = miny∈C ‖x − y‖,
and theG-weighted distance by distG(x, C) = miny∈C ‖x−y‖G whereG is a self-adjoint and
positive definite linear operator. The notation ρ(G) denotes the spectral radius of G, while
λmin(G) and λmax(G) denote the minimum and maximum eigenvalues of G, respectively.

1.2 RelatedWork

Due to the separable structure of f and g in (1.1), many effective algorithms are designed to
treat them individually so as to make full use of the properties of each component objective
function. An earlier yet simpler approach for solving (1.1) is the Arrow–Hurwicz method
[1]:

(PDHG)

⎧
⎨

⎩

xk+1 = arg min
x∈X L(x, yk) + 1

2τ

∥
∥x − xk

∥
∥2,

yk+1 = argmax
y∈Y L(xk+1, y) − 1

2σ

∥
∥y − yk

∥
∥2,

(1.2)

where the positive parameters τ and σ are often regarded as the proximal primal and dual
stepsizes. This Arrow–Hurwiczmethodwas also called a primal-dual hybrid gradientmethod
(PDHG) due to the earlier work [51], and it was described [50] as a proximal version of the

123

Journal of Scientific Computing (2025) 102 :80 Page 3 of 33 80

traditional augmented Lagrangian method (ALM) for some canonical convex programming
problems. O’Connor and Vandenberghe [36] showed that PDHG can be viewed as a spe-
cial case of the Douglas–Rachford splitting algorithm [35] from the perspective of solving
a monotone inclusion problem. Another related well-known algorithm based on (1.2) is
proposed by Chambolle-Pock [9] (see e.g. [37]) by employing an extrapolation technique:

⎧
⎨

⎩

xk+1 = arg min
x∈X L(x, yk) + 1

2τ

∥
∥x − xk

∥
∥2,

yk+1 = argmax
y∈Y L(xk+1 + α(xk+1 − xk), y) − 1

2σ

∥
∥y − yk

∥
∥2.

(1.3)

Here, α ∈ [0, 1] is an extrapolation stepsize. Clearly, (1.3) reduces to (1.2) when α = 0. It
was shown in [9] that (1.3) is closely related to the existing extragradient method [32] and
a preconditioned version of the alternating direction method of multipliers (ADMM) [18].
The connection between (1.3) and the forward–backward splitting method [35] can be found
in [42]. Although the scheme (1.3) applies a proximal technique, some counter-examples
provided in [25] showed that when α = 0, i.e. the PDHG method, it is not necessarily con-
vergent. Moreover, the global convergence of (1.3) with α ∈ (0, 1) remains still unknown,1

although its global convergence with α = 0 had been established [23] by assuming strong
convexity on one of the objective functions. So far, the widely used scheme of (1.3) is the
case with α = 1:

(CP-PPA)

⎧
⎨

⎩

xk+1 = arg min
x∈X L(x, yk) + 1

2τ

∥
∥x − xk

∥
∥2,

yk+1 = argmax
y∈Y L(2xk+1 − xk, y) − 1

2σ

∥
∥y − yk

∥
∥2,

(1.4)

where the stepsize parameters τ and σ need to satisfy

1

τσ
> L with L = ρ(K�K) (1.5)

for ensuring global convergence of CP-PPA. Convergence of an adaptive version of (1.4) was
investigated by Goldstein et al. [20]. More recently, He et al. [24] extended CP-PPA (1.4) to
the following generalized version:

(GCP-PPA)

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = arg min
x∈X L(x, yk) + 1

2τ

∥
∥x − xk

∥
∥2,

ȳk+1 = argmax
y∈Y L(xk+1 + α(xk+1 − xk), y) − 1

2σ

∥
∥y − yk

∥
∥2,

yk+1 = ȳk+1 − (1 − α)σK (xk+1 − xk),

(1.6)

where α ∈ [0, 1] is a parameter. GCP-PPA has global convergence when

1

τσ
> (1 − α + α2)L. (1.7)

Obviously, when α = 1 the above GCP-PPA reduces to CP-PPA, while for α ∈ [0, 1) an
extrapolation step is used for the dual variable to ensure global convergence. Moreover,
the stepsize requirement (1.7) is more relaxed than the condition (1.5). For example, when
α = 0.5, (1.7) only requires 1

τσ
> 0.75L . In addition, some stochastic and accelerated

first-order methods have been also proposed for solving (1.1) when its objective function has
certain structures or satisfies further smoothness conditions. For amuch incomplete reference
list, please see e.g. [11, 12, 26, 28, 33, 44, 47, 52].

1 Recently, its weak convergence was established in [2] when α > 1/2 and τσ L < 4/(1 + 2α).

123

80 Page 4 of 33 Journal of Scientific Computing (2025) 102 :80

Table 1 Relationship between G-AFBA (1.8) and several methods

Cases Algorithms Region of (τ, σ)

α = 1 CP-PPA [9] & Reduced ALM (1.5)

(α, μ) = (0, 1) Exact version of Algorithm 2 [30] (1.5)

α ∈ [0, 1], μ = 0 GCP-PPA [24] (1.7)

α,μ ∈ [0, 1] G-AFBA(ours) (1.9)

α = 0, μ ∈ [0, 1] G1-AFBA(ours) (4.4)

As a generalization of (1.3), the Condat-Vũ scheme proposed independently in [14, 42]
has attracted much attention in recent years and its convergence can be proved by casting
the scheme into a forward–backward splitting method. However, the condition of involved
parameters seems to be more restrictive than that of PDHG. Another interesting and closely
related method is the asymmetric forward–backward–adjoint algorithm (AFBA) [33] for
solving structured monotone inclusion problems, which was also studied and extended to
solve the saddle-point problem (1.1) [46]. An inexact AFBA with absolute error criteria was
further proposed in [30] to alleviate both theoretical and numerical difficulties of solving
subproblems exactly. But, to our understanding, both the original AFBA and its inexact
version have an even more conservative stepsize rule than that of the Condat-Vũ scheme. For
a comprehensive survey on proximal splitting algorithms, we refer to [15] for more details.

1.3 The Algorithm and Contribution

Notice that the convergence condition of CP-PPA has been significantly improved byHe et al.
[24] through performing an extrapolation step on the y-variable along the iterative difference
of the x-variable. That is, the correction step of y-iterates uses the interactive information
from x-iterates, which is different from the traditional way of performing correction steps
along its own iterates. A natural and yet interesting question to investigate is whether the
convergence condition (1.7) can be further improved by applying extrapolation steps on
both the primal and dual updates. By this motivation, we propose the following generalized
asymmetric forward–backward–adjoint algorithm:

(G-AFBA)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄ k+1 = arg min
x∈X f (x) + 1

2τ

∥
∥x − xk + τK�yk

∥
∥2,

ȳk+1 = argmin
y∈Y g(y) + 1

2σ

∥
∥y − yk − σK [x̄ k+1 + α(x̄ k+1 − xk)]∥∥2,

xk+1 = x̄ k+1 − (1 − α)μτK�(ȳk+1 − yk),
yk+1 = ȳk+1 + (1 − α)(1 − μ)σK (x̄ k+1 − xk),

(1.8)

where α,μ ∈ [0, 1], τ > 0 and σ > 0 are algorithm parameters. To ensure the global
convergence of G-AFBA, we require the primal-dual stepsize parameters (σ, τ) to satisfy

1

τσ
>

α + (1 − μ + μ2)(1 − α)2 + √[α − (1 − μ + μ2)(1 − α)2]2 + 4α(1 − α)2

2
L.

(1.9)
We now have the following comments on G-AFBA:

(I) Flexibility of the algorithm. Table 1 shows that G-AFBA is quite general and includes
many well-established algorithms we have previously discussed as special cases. We
refer to Sects. 4–5 for more detailed discussions on the connections between G-AFBA

123

Journal of Scientific Computing (2025) 102 :80 Page 5 of 33 80

Fig. 1 Visualization on the lower bound of 1
τσ L in (1.7) and (1.9)

and other related methods including the application of G-AFBA to multi-block convex
programming, an adaptive version of G-AFBA, and a tailored stochastic G-AFBA for
solving structured saddle-point problems from machine learning. The major difference
between G-AFBA (1.8) and other existing PDHG-type methods is the two crossing
extrapolation steps performed on the primal-dual variables, which can be also viewed as
a correction step from our later analysis in a prediction-correction framework (see (3.2)).
In fact, these two extrapolation steps can be also treated as backward and forward steps
on the primal-dual variables.

(II) Larger stepsize parameters. Figure1 visualizes the lower bound of 1
τσ L in (1.7) and

(1.9) for ensuring global convergence, where Fig. 1a is the same as Fig. 1b but at different
azimuth and elevation angles. As shown in Fig. 1, the lower bound 0.75 of 1

τσ L with
α = 0.5 in (1.7) can be further improved by the lower bound given in (1.9). Hence, the
current lower bound 0.75 on 1

τσ L for PDHG-type methods e.g. given in [24, 31, 34] is not
tight, and possible larger stepsizes on σ and τ can be applied in G-AFBA without losing
global convergence. For example, by setting (α, μ) = (1/3, 1/2), the condition (1.9)

reduces to 1
τσ

> 3+2
√
3

9 L ≈ 0.7182L. Moreover, note that when μ = 0, the condition
(1.9) will reduce to (1.7) exactly matching the convergence condition of GCP-PPA.

(III) Global convergence and various convergence rates. Based on variational reformu-
lations for both the saddle-point problem (1.1) and the iterative sequence of G-AFBA
(1.8), we establish the global convergence of G-AFBA, its sublinear convergence rate
in the sense of the primal-dual function value gap, the sublinear convergence rate of
the optimality gap and the optimality error measured by the difference of two consecu-
tive iterates. We also show the linear convergence of G-AFBA under proper regulation
(calmness) conditions. We further propose an adaptive version of G-AFBA with sim-
ilar convergence rate but often enjoying significantly better practical performance. In
addition, we give a customized stochastic G-AFBA (SG-AFBA) for solving a structured
(1.1) with large sample sizes from machine learning. In fact, by considering the sample
size as one, SG-AFBA will reduce to an inexact deterministic G-AFBA which allows to
solve one proximal mapping subproblem to an adaptive accuracy (see the discussion in
Sect. 5). Our numerical experiments on solving two classes of image processing problems
indicate that by allowing flexible choices of stepsizes σ and τ , G-AFBA and its variants
can have better performance compared with some well-established methods.

123

80 Page 6 of 33 Journal of Scientific Computing (2025) 102 :80

1.4 Organization of the Paper

In Sect. 2, we prepare some preliminaries that are used to analyze the convergence of G-
AFBA. Section3 is dedicated to analyzing the global convergence and sublinear/linear
convergence rate of G-AFBA based on a prediction-correction framework. Section4 shows
the relationship of G-AFBA with some existing and new related methods. Section5 provides
an adaptive G-AFBA (aG-AFBA) and a customized stochastic G-AFBA (SG-AFBA). We
finally present numerical comparisons of G-AFBA, aG-AFBA and SG-AFBA with some
other well-known methods in Sect. 6.

2 Preliminaries

In this section, we first provide a variational formulation for the saddle-point problem (1.1).
Then, we show some nice properties of certain block structured matrices which will play key
roles in the theoretical analysis of G-AFBA.

2.1 Reformulation of the Saddle-Point

Let � := X × Y . We call a point (x∗, y∗) ∈ � the saddle-point of (1.1) if it satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ X , y ∈ Y,

that is, {
f (x) − f (x∗) + 〈

x − x∗, K�y∗〉 ≥ 0, ∀x ∈ X ,

g(y) − g(y∗) + 〈
y − y∗,−Kx∗〉 ≥ 0, ∀y ∈ Y.

(2.1)

These inequalities can be expressed as the following variational form

VI(θ,J ,�) : θ(u) − θ(u∗) + 〈
u − u∗,J (u∗)

〉 ≥ 0, ∀u ∈ �, (2.2)

where

u =
(
x
y

)

, θ(u) = f (x) + g(y), J (u) =
(
K�y
−Kx

)

. (2.3)

Notice that the above operator J (u) satisfies
〈
u − v,J (u) − J (v)

〉 ≡ 0, ∀u, v ∈ �.

In the convex optimization, u∗ satisfies (2.2) if and only if u∗ is a primal-dual solution of the
problem (1.1). Because of the nonempty assumption on the solution set of (1.1), the solution
set of VI(θ,J ,�), denoted by �∗, is also nonempty and can be characterized as (see [22])

�∗ =
⋂

u∈�

{
ū | θ(u) − θ(ū) + 〈

u − ū,J (ū)
〉 ≥ 0

}
. (2.4)

2.2 SomeMatrices and Properties

In order to simplify and conveniently analyze the convergence of G-AFBA, we introduce the
following matrices

Q =
[1

τ
I −K�

−αK 1
σ
I

]

, M =
[

I −(1 − α)μτK�
(1 − α)(1 − μ)σK I

]

. (2.5)

123

Journal of Scientific Computing (2025) 102 :80 Page 7 of 33 80

Note that the matrix M is nonsingular for any μ ∈ [0, 1] and τ, σ > 0. With these matrices,
we define

H = QM−1 and G = Q� + Q − M�HM . (2.6)

For the matrices H and G, the following properties hold.

Proposition 2.1 For any parameters (τ, σ) satisfying (1.9), the matrices H and G defined in
(2.6) are symmetric positive definite.

Proof First, notice that

1
(τσ)2

+
[
(−1 + μ − μ2)(1 − α)2 − α

]
L
τσ

− (1 − α)2(1 − μ)μαL2 > 0

⇐⇒
[

1
τσ

+ (1 − α)2(1 − μ)μL

][
1

τσ
− αL

]

> (1 − α)2 L
τσ

.

Hence, for all (τ, σ) satisfying (1.9), we have 1/(τσ) > αL , which implies Q defined in
(2.5) is nonsingular. Now, let us define D = Q�M . Then, D is nonsingular since M is
nonsingular. In addition, the H and G defined in (2.6) can be written as

H = QD−1Q� and G = Q� + Q − D. (2.7)

By direct calculation, we can derive from (2.5) and (2.7) that

D =
[1

τ
I − α(1 − α)(1 − μ)σK�K −[

α + (1 − α)μ
]
K�

−[
α + (1 − α)μ

]
K 1

σ
I + (1 − α)μτKK�

]

(2.8)

and

G =
[1

τ
I + α(1 − α)(1 − μ)σK�K

[
(1 − α)μ − 1

]
K�

[
(1 − α)μ − 1

]
K 1

σ
I − (1 − α)μτKK�

]

. (2.9)

Due to the symmetric property of D and the relationship H = QD−1Q�, we also have
H is symmetric. Hence, to show the positive definiteness of H , we only need to show D is
positive definite. Without loss of generality, suppose K is an m × n(m ≤ n) dimensional
operator matrix and let K = V	U� be the singular value decomposition of K , where both
V ∈ R

m×m and U ∈ R
n×n are orthogonal matrices and 	 = (m, 0) is a diagonal matrix

with 	m = diag(s1, s2, · · · , sm) ∈ R
m×m and si ≥ 0(i = 1, 2, . . . ,m) being the singular

values of K . Then, we have

K�K = U

[
	2

m 0
0 0

]

U� and K K� = V	2
mV

�.

Then, it follows from (2.8) that

D =
[
U 0
0 V

]
⎡

⎣

1
τ
I − α(1 − α)(1 − μ)σ	2

m 0 −[
α + (1 − α)μ

]
	m

0 1
τ
I 0

−[
α + (1 − α)μ

]
	m 0 1

σ
I + (1 − α)μτ	2

m

⎤

⎦

︸ ︷︷ ︸
P

[
U 0
0 V

]�
.

By linear algebra calculations (e.g. see similar techniques in [43, Page 16]), we can show
that the matrix P is positive definite if and only if

(1

τ
− α(1 − α)(1 − μ)σ s2i

)(1

σ
+ (1 − α)μτ s2i

)
−

[
α + (1 − α)μ

]2
s2i > 0

123

80 Page 8 of 33 Journal of Scientific Computing (2025) 102 :80

for all i = 1, . . . ,m, which is equivalent to

1

(τσ)2
+ [

(1 − μ)μ(1 − α)2 − α
] s2i
τσ

− (1 − α)2(1 − μ)μαs4i > 0

⇐⇒
[1

τσ
+ (1 − α)2(1 − μ)μs2i

][1

τσ
− αs2i

]
> 0. (2.10)

Since L = ρ(K�K) = ρ(KK�) = max
i∈{1,...,m} s

2
i > 0, α,μ ∈ [0, 1] and σ, τ > 0, we have

from (2.10) that the matrix P is positive definite if 1/(τσ) > αL , which is ensured by the
previous condition (1.9). So, from the above analysis, we have H is positive definite if (τ, σ)

satisfies (1.9).
By the similar analysis and the representation ofG in (2.9), we can showG is also positive

definite if the condition (1.9) holds. The proof is completed. ��

3 Convergence Analysis

In this section, we first analyze the global convergence of G-AFBA and its sublinear conver-
gence rate in the ergodic sense. We then study the sublinear convergence rate of G-AFBA in
terms of both the difference of two consecutive iterations and the first-order optimality gap.
We finally discuss the linear convergence of G-AFBA under a certain calmness conditions.

Now, observe that G-AFBA (1.8) can be equivalently written as the following prediction-
correction framework, where M is given by (2.5), uk and ũk are defined as

uk =
(
xk

yk

)

and ũk =
(
x̃ k

ỹk

)

,

and the proximal operator of a function h with parameter τ > 0 is defined as

proxτh(y) := arg min
x∈X

{
h(x) + 1

2τ
‖x − y‖2

}
.

Algorithm 3.1: A prediction-correction reformulation of G-AFBA.

Prediction Step:

x̃ k = proxτ f

(
xk − τK�yk

); (3.1a)

ỹk = proxσ g

(
yk + σK [x̃ k + α(x̃ k − xk)]); (3.1b)

Correction Step:
uk+1 = uk − M(uk − ũk). (3.2)

3.1 Global Convergence

The global convergence of G-AFBA will be analyzed based on the above prediction-
correction reformulation.

Lemma 3.1 Let {ũk = (x̃ k; ỹk)} be the predictor sequence generated by (3.1a)–(3.1b) and
{uk+1 = (xk+1; yk+1)} be the corrector sequence generated by (3.2). Then, for any u ∈ �,
the following inequality

123

Journal of Scientific Computing (2025) 102 :80 Page 9 of 33 80

L(x, ỹk) − L(x̃ k, y) ≥ (u − ũk)�Q(uk − ũk) (3.3)

holds2, where Q is given by (2.5).

Proof We can derive from the first-order optimality condition of (3.1a) that

f (x) − f (x̃ k) + 〈
x − x̃ k, K�yk + 1

τ
(x̃ k − xk)

〉 ≥ 0, ∀x ∈ X .

Rearranging the above inequality to obtain

f (x) − f (x̃ k) + 〈
x − x̃ k, K� ỹk

〉 ≥
〈
x − x̃ k,

1

τ
(xk − x̃ k) − K�(yk − ỹk)

〉
(3.4)

for any x ∈ X . Similarly, we have from (3.1b) that

g(y) − g(ỹk) + 〈
y − ỹk,−K [x̃ k + α(x̃ k − xk)] + 1

σ
(ỹk − yk)

〉 ≥ 0, ∀y ∈ Y,

which can be equivalently rewritten as

g(y) − g(ỹk) + 〈
y − ỹk,−K x̃k

〉 ≥
〈
y − ỹk,−αK (xk − x̃ k) + 1

σ
(yk − ỹk)

〉
(3.5)

for any y ∈ Y . Combining (3.4) and (3.5) completes the proof of (3.3). ��
The following lemma shows that the sequence {‖u∗ − uk‖H } is strictly decreasing under

the weighted norm ‖u‖H = √
u�Hu.

Lemma 3.2 Under the condition (1.9), the sequences {ũk} and {uk+1} generated by G-AFBA
satisfy

L(x, ỹk) − L(x̃ k, y) ≥ 1

2

(∥
∥u − uk+1

∥
∥2
H − ∥

∥u − uk
∥
∥2
H

) + 1

2

∥
∥uk − ũk

∥
∥2
G (3.6)

for any u ∈ �, where H and G are defined in (2.6). Moreover, we have
∥
∥u∗ − uk

∥
∥2
H ≥ ∥

∥u∗ − uk+1
∥
∥2
H + ∥

∥uk − ũk
∥
∥2
G , ∀u∗ ∈ �∗. (3.7)

Proof According to (3.2) and the definition of H in (2.6), we have

(u − ũk)�Q(uk − ũk) = (u − ũk)�H(uk − uk+1). (3.8)

Then, applying the identity

(a − b)�H(c − d) = 1

2

{
‖a − d‖2H − ‖a − c‖2H

}
+ 1

2

{
‖c − b‖2H − ‖d − b‖2H

}

with a = u, b = ũk , c = uk and d = uk+1 to the right-hand side of (3.8) gives

(u − ũk)�H(uk − uk+1) − 1
2

{∥
∥u − uk+1

∥
∥2
H − ∥

∥u − uk
∥
∥2
H

}

= 1
2

{∥
∥uk − ũk

∥
∥2
H − ∥

∥uk+1 − ũk
∥
∥2
H

}

= 1
2

{∥
∥uk − ũk

∥
∥2
H − ∥

∥uk+1 − uk + (uk − ũk)
∥
∥2
H

}

(3.2)= 1
2

{∥
∥uk − ũk

∥
∥2
H − ∥

∥(uk − ũk) − M(uk − ũk)
∥
∥2
H

}

= 1
2

{
(uk − ũk)�(Q� + Q − M�HM)(uk − ũk)

}
(2.6)= 1

2

∥
∥uk − ũk

∥
∥2
G ,

(3.9)

2 Note that (3.3) is equivalent to θ(u) − θ(ũk) + 〈
u − ũk ,J (ũk)

〉 ≥ (u − ũk)�Q(uk − ũk).

123

80 Page 10 of 33 Journal of Scientific Computing (2025) 102 :80

where the fourth equality exploits the relation Q = HM and its symmetric property. Then,
substituting (3.8) and (3.9) into (3.3) confirms the assertion (3.6).

Set u = u∗ in (3.6) and use (2.1) with (x, y) = (x̃ k, ỹk) to obtain

∥
∥u∗ − uk

∥
∥2
H − ∥

∥u∗ − uk+1
∥
∥2
H − ∥

∥uk − ũk
∥
∥2
G ≥ 2

[
L(x̃ k, y∗) − L(x∗, ỹk)

] ≥ 0.

Then, (3.7) follows directly. The proof is complete. ��

In what follows, based on Lemma 3.2, we are ready to prove the global convergence of
G-AFBA.

Theorem 3.1 Under the condition (1.9), the sequence {uk+1} generated by G-AFBA
converges to the solution point of (1.1).

Proof First, it follows from (3.7) in Lemma 3.2 and the positive definiteness of G and H that
the sequence {uk} is bounded and

lim
k→∞

∥
∥uk − ũk

∥
∥ = 0. (3.10)

As a result, the sequence {ũk} is also bounded and has at least one limit point u∞. Let {ũk j }
be a subsequence converging to u∞. Then, it follows from (3.3) that

θ(u) − θ(ũk j) + 〈
u − ũk j ,J (ũk j)

〉 ≥ (u − ũk j)�Q(uk j − ũk j), ∀u ∈ �,

which, together with (3.10), the lower semicontinuity of θ(u) and the continuity of J (u),
implies

θ(u) − θ(u∞) + 〈
u − u∞,J (u∞)

〉 ≥ 0, ∀u ∈ �.

That is to say, u∞ is a solution point of (2.2) and hence is a solution point of (1.1).
Now, by (3.10) and lim j→∞ uk j = u∞, the sequence {uk j } also converges to u∞. For

any k ≥ k j , we can deduce from (3.7) that
∥
∥u∞ − uk j

∥
∥
H ≥ ∥

∥u∞ − uk
∥
∥
H . So, the whole

sequence {uk} converges to u∞. The proof is complete. ��

3.2 Sublinear Rate of Convergence

In this section,we analyze theworst-caseO(1/T) convergence rate ofG-AFBA in the ergodic
sense in terms of the optimality error measured by both the difference of two consecutive
iterates and the first-order optimality gap, respectively, where T denotes the iteration number.
First, it is obvious that (2.1) can be also expressed as

L(x, y∗) − L(x∗, y) ≥ 0, ∀(x, y) ∈ �.

Hence, by (2.4), ū = (x̄; ȳ) is often called an ε-approximate solution point of VI(θ,J ,�)

(2.2) with the accuracy ε > 0 if it satisfies

L(x̄, y) − L(x, ȳ) ≤ ε, ∀u ∈ Bū = {u ∈ � | ‖u − ū‖ ≤ 1}.
In the following, we will demonstrate that, after T iterations, G-AFBA is able to find a point
ū such that

sup
u=(x,y)∈Bū

{
L(x̄, y) − L(x, ȳ)

} ≤ O(1/T). (3.11)

123

Journal of Scientific Computing (2025) 102 :80 Page 11 of 33 80

Theorem 3.2 Let {ũk} be the predictor sequence generated by (3.1a)–(3.1b) and {uk} be the
corrector sequence generated by (3.2). For any integers T > 0 and κ ≥ 0, let

xT = 1

1 + T

T+κ∑

k=κ

x̃ k and yT = 1

1 + T

T+κ∑

k=κ

ỹk . (3.12)

Then, under the condition (1.9) we have

L(xT , y) − L(x, yT) ≤ 1

2(T + 1)

∥
∥u − uκ

∥
∥2
H , ∀u ∈ �, (3.13)

where H is defined in (2.6).

Proof The inequality (3.6) together with the positive definiteness of G implies

L(x̃ k, y) − L(x, ỹk) ≤ 1

2

{∥
∥u − uk

∥
∥2
H − ∥

∥u − uk+1
∥
∥2
H

}
(3.14)

for any u ∈ �. Sum the last inequality over k = κ, κ + 1, · · · , T + κ to obtain

T+κ∑

k=κ

[
L(x̃ k, y) − L(x, ỹk)

] ≤ 1

2

∥
∥u − uκ

∥
∥2
H ,

which, by the convexity of f , g, the definitions of xT and yT in (3.12), gives

(T + 1)
[
L(xT , y) − L(x, yT)

] ≤ 1

2

∥
∥u − uκ

∥
∥2
H .

Hence, (3.13) holds. The proof is complete. ��
Theorem 3.2 implies that under a more flexible condition (1.9), we have (3.11) holds, i.e.,

the primal-dual function value gap converges to zero with the worst-case O(1/T) ergodic
rate. A similar result to (3.13) in the sense of expectation can be found in [4]. We next
show that {‖uk − uk+1‖2H }, which also measures the optimality error, monotonically goes to
zero with the worst-case O(1/T) convergence rate. The following lemma confirms that the
sequence {‖uk − uk+1‖2H } decreases monotonically.

Lemma 3.3 Under the condition (1.9), the sequence {uk} generated by (3.2) satisfies
∥
∥uk − uk+1

∥
∥2
H ≥ ∥

∥uk+1 − uk+2
∥
∥2
H . (3.15)

Proof It follows from (3.3) with u = ũk+1 that

L(x̃ k+1, ỹk) − L(x̃ k, ỹk+1) ≥ (ũk+1 − ũk)�Q(uk − ũk). (3.16)

Similarly, (3.3) holds at the (k + 1)-th iteration, that is,

L(x, ỹk+1) − L(x̃ k+1, y) ≥ (u − ũk+1)�Q(uk+1 − ũk+1), ∀u ∈ �,

which, by setting u = ũk , results in

L(x̃ k, ỹk+1) − L(x̃ k+1, ỹk) ≥ (ũk − ũk+1)�Q(uk+1 − ũk+1). (3.17)

Combining (3.16) and (3.17), we have

(ũk − ũk+1)�Q
{
(uk − ũk) − −(uk+1 − ũk+1)

} ≥ 0. (3.18)

123

80 Page 12 of 33 Journal of Scientific Computing (2025) 102 :80

Then, adding the equality
{
(uk − ũk) − (uk+1 − ũk+1)

}�
Q
{
(uk − ũk) − (uk+1 − ũk+1)

}

= 1

2

∥
∥uk − ũk − (uk+1 − ũk+1)

∥
∥2

(Q�+Q)

(3.19)

to both sides of (3.18) leads to

1
2

∥
∥uk − ũk − (uk+1 − ũk+1)

∥
∥2

(Q�+Q)

≤ (uk − uk+1)�Q
{
(uk − ũk) − (uk+1 − ũk+1)

}

(3.2)= (uk − ũk)�M�Q
{
(uk − ũk) − (uk+1 − ũk+1)

}

(2.5)= (uk − ũk)�M�HM
{
(uk − ũk) − (uk+1 − ũk+1)

}
.

Using this relationship, the identity ‖a‖2H − ‖b‖2H = 2a�H(a − b) − ‖a − b‖2H with
a = M(uk − ũk) and b = M(uk+1 − ũk+1) and uk − uk+1 = M(uk − ũk), we have

∥
∥uk − uk+1

∥
∥2
H − ∥

∥uk+1 − uk+2
∥
∥2
H

= ∥
∥M(uk − ũk)

∥
∥2
H − ∥

∥M(uk+1 − ũk+1)
∥
∥2
H

= 2(uk − ũk)�M�HM
{
(uk − ũk) − (uk+1 − ũk+1)

} − ∥
∥M{(uk − ũk) − (uk+1 − ũk+1)}∥∥2H

≥ ∥
∥uk − ũk − (uk+1 − ũk+1)

∥
∥2

(Q�+Q)
− ∥

∥M{(uk − ũk) − (uk+1 − ũk+1)}∥∥2H
(2.6)= ∥

∥uk − ũk − (uk+1 − ũk+1)
∥
∥2
G ≥ 0,

where the last inequality follows from the positive definiteness of G. We complete the
proof. ��
Theorem 3.3 Suppose the condition (1.9) holds. Then, for any integers T > 0 and κ ≥ 0,
there exists a constant c0 > 0 such that the sequence {uk+1} generated by G-AFBA satisfies

∥
∥uT+κ − uT+κ+1

∥
∥2
H ≤ 1

(T + 1)c0

∥
∥uκ − u∗∥∥2

H , ∀u∗ ∈ �∗. (3.20)

Proof First, by the positive definiteness of G and M�HM , there exists a constant c0 such
that G − c0M�HM is positive definite. Hence, we have

∥
∥uk − ũk

∥
∥2
G ≥ c0

∥
∥M(uk − ũk)

∥
∥2
H = c0

∥
∥uk − uk+1

∥
∥2
H .

Then, it follows from inequality (3.7) that
∥
∥uk+1 − u∗∥∥2

H ≤ ∥
∥uk − u∗∥∥2

H − c0
∥
∥uk − uk+1

∥
∥2
H , ∀u∗ ∈ �∗. (3.21)

Summing (3.21) over k = κ, κ + 1, · · · , T + κ , it follows from the monotonicity of {‖uk −
uk+1‖2H } given in (3.15) that

∥
∥uκ − u∗∥∥2

H ≥
T+κ∑

k=κ

c0
∥
∥uk − uk+1

∥
∥2
H ≥ (1 + T)c0

∥
∥uT+κ − uT+κ+1

∥
∥2
H

for any u∗ ∈ �∗, which leads to (3.20) immediately. ��
For any given ε > 0, Theorem 3.3 shows that the proposed G-AFBA (1.8) needs at most

[c/ε] iterations to ensure ‖uk − uk+1‖2H ≤ ε, where c = inf
u∗∈�∗ ‖u0 − u∗‖2H/c0. Recall that

uk+1 is a solution point of VI(θ,J ,�) if and only if ‖uk − uk+1‖ = 0. Hence, Theorem 3.3

123

Journal of Scientific Computing (2025) 102 :80 Page 13 of 33 80

indicates that ‖uk − uk+1‖H , which can be used as a measure of optimality error, converges
to zero sublinearly. Moreover, let dk := (dkx , d

k
y), where

dkx = 1

τ
(xk − x̃ k)−K T(yk − ỹk) and dky = 1

σ
(yk − ỹk) − αK (xk − x̃ k).

Since the optimality conditions in (3.4) and (3.5) are equivalent to
{
f (x) − f (x̃ k) + 〈

x − x̃ k, K� ỹk − dkx
〉 ≥ 0, ∀x ∈ X ,

g(y) − g(ỹk) + 〈
y − ỹk,−K x̃k − dky

〉 ≥ 0, ∀y ∈ Y,

we have from finite-dimensional Euclidean spaces of X and Y that

dkx − K T ỹk ∈ ∂ f (x̃ k) and dky + K x̃k ∈ ∂g(ỹk).

Hence, ‖dk‖ also measures the first-order optimality error. Notice that dk = Q(uk − ũk) =
H(uk − uk+1). So,

‖dk‖ = ‖H(uk − uk+1)‖ ≤ √
λmax(H)‖uk − uk+1‖H ,

which, by Theorem 3.3, implies ‖dk‖ also goes to zero in a sublinear rate.

3.3 Linear Rate of Convergence

For any u = (x; y) ∈ �, we define the KKT mapping as

R(u) :=
(
x − prox f

(
x − K�y

)

y − proxg(y + Kx)

)

(3.22)

which is Lipschitz continuous on� because the proximal operator of a proper convex function
is Lipschitz continuous with unit Lipschitz constant. Furthermore, given any u ∈ �, we have
u ∈ �∗ if and only if R(u) = 0. Hence, �∗ = {u ∈ � | R(u) = 0}.

In this subsection, under a calmness condition (see (3.23)), we establish the Q-linear
convergence of {distH (uk,�∗)} to zero, where distH (uk,�∗) = minu∈�∗ ‖u − uk‖H , and
the R-linear convergence of {uk} to a u∞ ∈ �∗. Similar conditions had been used for the
linear convergence of ADMM and the inexact primal-dual algorithm, cf. [3, 29] to list a few.

Theorem 3.4 Let {ũk} be the predictor sequence generated by (3.1a)–(3.1b) and {uk} be the
corrector sequence generated by (3.2). Suppose the condition (1.9) holds. Then, we have the
following properties:

(i) There exists a saddle-point u∞ = (x∞; y∞) ∈ �∗ such that

lim
k→∞ ũk = lim

k→∞ uk+1 = u∞.

(ii) If R−1 is calm at the origin for u∞ with modulus θ > 0, that is,

dist(u,�∗) ≤ θ‖R(u)‖, ∀u ∈ {
u ∈ �

∣
∣‖u − u∞‖ ≤ r

}
, (3.23)

for some r > 0, then there exist a ξ ∈ (0, 1) such that

distH (uk+1,�∗) ≤ ξdistH (uk,�∗) (3.24)

for all k ≥ 0. Moreover, the sequence {‖uk − u∞‖} converges to zero R-linearly.

123

80 Page 14 of 33 Journal of Scientific Computing (2025) 102 :80

Proof First, property (i) directly follows from Theorem 3.1. So, there exists an integer k̄ > 0
such that

‖uk − u∞‖ ≤ r , ∀k ≥ k̄. (3.25)

From the optimality conditions of (3.1a)–(3.1b), we can derive
⎧
⎨

⎩

x̃ k = prox f

[
x̃ k −

(
1
τ

(
x̃ k − xk

) + K�yk
)]

,

ỹk = proxg
[
ỹk −

(
1
σ
(ỹk − yk) − K (x̃ k + α(x̃ k − xk))

)]
.

(3.26)

Combine (3.26) and the definition of R(·) in (3.22) to obtain

‖R(ũk)‖2 = ∥
∥x̃ k − prox f (x̃

k − K� ỹk)
∥
∥2 + ∥

∥ỹk − proxg(ỹ
k + K x̃k)

∥
∥2

≤ ∥
∥ − 1

τ
(x̃ k − xk) + K�(ỹk − yk)

∥
∥2 + ∥

∥αK (x̃ k − xk)− 1
σ
(ỹk − yk)

∥
∥2

≤ 2
(
α2L + 1

τ 2

)‖xk − x̃ k‖2 + 2
(
L + 1

σ 2

)‖yk − ỹk‖2
≤ κ1‖uk − ũk‖2,

where first inequality uses the non-expansive property of prox f (·) and proxg(·), and

κ1 = 2max

{

α2L + 1

τ 2
, L + 1

σ 2

}

. (3.27)

So, it follows from the last inequality and (3.23) that for all k ≥ k̄,

dist(ũk,�∗) ≤ θ
√

κ1‖uk − ũk‖. (3.28)

Then, by triangle inequality and (3.28), for all k ≥ k̄, we have

1√
λmax(H)

distH (uk,�∗) ≤ dist(uk,�∗) ≤ dist(ũk,�∗) + ‖uk − ũk‖

≤ (1 + θ
√

κ1)‖uk − ũk‖ ≤ 1 + θ
√

κ1√
λmin(G)

‖uk − ũk‖G . (3.29)

Since (3.7) holds for any u∗ ∈ �∗, for all k ≥ 0 we have

dist2H (uk+1,�∗) ≤ dist2H (uk,�∗) − ‖uk − ũk‖2G , (3.30)

which together with (3.29) gives

distH (uk+1,�∗) ≤
√

1 − 1

(1 + θ
√

κ1)
2

λmin(G)

λmax(H)
distH (uk,�∗) (3.31)

for all k ≥ k̄. Finally, (3.30) and (3.31) implies there exists a ξ ∈ (0, 1) such that (3.24)
holds, that is, the sequence {distH (uk,�∗)} converges to zero Q-linearly.

Now, let dk = uk+1 − uk . We have from (3.30) and triangle inequality that
∥
∥dk

∥
∥
H = ∥

∥uk+1 − uk
∥
∥
H ≤ distH (uk,�∗) + distH ((uk+1,�∗)

≤ 2distH (uk,�∗)
(3.24)≤ 2ξ kdistH (u0,�∗).

Hence, we have from u∞ = uk + ∑∞
j=k d

j that
∥
∥uk − u∞∥

∥
H ≤ ∑∞

j=k

∥
∥d j

∥
∥
H ≤ 2distH (u0,�∗)

∑∞
j=k ξ j

= 2distH (u0,�∗)ξ k
∑∞

j=0 ξ j = ξ k
(
2distH (u0,�∗) 1

1−ξ

)
,

which implies the sequence {‖uk − u∞} converges to zero R-linearly. ��

123

Journal of Scientific Computing (2025) 102 :80 Page 15 of 33 80

Theorem 3.4 shows linear convergence of G-AFBA under the calmness condition. In
practice, it is not easy to check whether the calmness condition (3.23) holds or not. However,
when the mapping R defined by (3.22) is piecewise polyhedral, or equivalently, R−1 is
piecewise polyhedral, we know (e.g. see [39]) there exist two constants β, η > 0 such that

dist(u,�∗) ≤ β‖R(u)‖, ∀u ∈ {
u ∈ �

∣
∣‖R(u)‖ ≤ η

}
. (3.32)

When R(u) > η, for all ‖u − u∞‖ ≤ r with some r > 0, we have

dist(u,�∗) ≤ ‖u − u∞‖ ≤ r <
r

η
‖R(u)‖. (3.33)

So, given any r > 0, we have from (3.32) and (3.33) that the calmness condition (3.23)
holds with θ = max{β, r/η}. Moreover, by Theorem 3.1, there exists a r̄ > 0 such that
‖uk − u∞‖ ≤ r̄ for all k ≥ 0. Hence, when the mapping R defined by (3.22) is piecewise
polyhedral, for {uk} generated by G-AFBA, we have dist(uk,�∗) ≤ θ̄‖R(uk)‖ for some θ̄ >

0. Furthermore, by Theorem 3.4, we have {distH (uk,�∗)} converges to zero Q-linearly and
{‖uk − u∞} converges to zero R-linearly. Here, we want to mention that linear convergence
had been also discussed when assuming certain strongly convexity on the objective function
(see e.g. [10, 11]).

4 Connections Between (1.8) and Other RelatedMethods

In this section, we discuss in a bit more detail on the connections between G-AFBA (1.8)
and some existing and new related algorithms.

• Case 1 (CP-PPA in [9] and a reduced ALM). When α = 1, G-AFBA (1.8) will reduce
to ⎧

⎨

⎩

xk+1 = arg min
x∈X f (x) + 1

2τ

∥
∥x − xk + τK�yk

∥
∥2,

yk+1 = argmin
y∈Y g(y) + 1

2σ

∥
∥y − yk − σK (2x̃ k − xk)

∥
∥2,

which is CP-PPA proposed in [9].When α = 1 and g = 0, the problem (1.1) is equivalent
to

min f (x) s.t. Kx = 0, x ∈ X , (4.1)

and G-AFBA (1.8) recovers a ALM-type method
{
xk+1 = arg min

x∈X f (x) + 1
2τ

∥
∥x − xk + τK�λk

∥
∥2,

λk+1 = λk + σK (2xk+1 − xk).

Note that two different parameters τ and σ are exploited here, which is different from
the standard augmented Lagrangian method for solving (4.1).

• Case 2 (Exact version of [30, Algorithm 2]). When (α, μ) = (0, 1), G-AFBA reduces
to ⎧

⎪⎪⎨

⎪⎪⎩

x̄ k+1 = arg min
x∈X f (x) + 1

2τ

∥
∥x − xk + τK�yk

∥
∥2,

yk+1 = argmin
y∈Y g(y) + 1

2σ

∥
∥y − yk − σK x̄k+1

∥
∥2,

xk+1 = x̄ k+1 − τK�(yk+1 − yk),

(4.2)

which is the exact version of [30, Algorithm 2] by setting the iterative relative error
to zero. For this case, the condition (1.9) reduces to 1/(στ) > L , which matches the
condition given in [30].

123

80 Page 16 of 33 Journal of Scientific Computing (2025) 102 :80

• Case 3 (A subclass of G-AFBA). By setting α = 0, G-AFBA reduces to

(G1-AFBA)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄ k+1 = arg min
x∈X f (x) + 1

2τ

∥
∥x − xk + τK�yk

∥
∥2,

ȳk+1 = argmin
y∈Y g(y) + 1

2σ

∥
∥y − yk − σK x̄k+1

∥
∥2,

xk+1 = x̄ k+1 − μτK�(ȳk+1 − yk),
yk+1 = ȳk+1 + (1 − μ)σK (x̄ k+1 − xk).

(4.3)

One may consider (4.3) as an extension of (4.2), since (4.3) applies an additional
extrapolation step on the y-iterate, while the xk+1-iterate in (4.3) can be written as

xk+1 = x̄ k+1 − τK�(ȳk+1 − yk) + (1 − μ)τK�(ȳk+1 − yk).

Interestingly, with α = 0, the condition (1.9) for convergence reduces to

1

τσ
> (1 − μ + μ2)L. (4.4)

Clearly, (1−μ+μ2) ≤ 1 for anyμ ∈ [0, 1] and whenμ = 0.5, it becomes 1
τσ

> 0.75L .
The condition (4.4) seems similar to the condition (1.7) for ensuring convergence of
GCP-PPA [24]. However, we can see from (4.3) that G1-AFBA is completely a different
method from GCP-PPA (1.6).

• Case 4 (GCP-PPA [24]). When μ = 0, G-AFBA reduces to

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = arg min
x∈X f (x) + 1

2τ

∥
∥x − xk + τK�yk

∥
∥2,

ȳk+1 = argmin
y∈Y g(y) + 1

2σ

∥
∥y − yk − σK [xk+1 + α(xk+1 − xk)]∥∥2,

yk+1 = ȳk+1 + (1 − α)σK (xk+1 − xk),

(4.5)

which is the method (1.6) proposed in [24]. As mentioned in the introduction, in this case
the condition (1.9) will reduce to (1.7), which is exactly the condition derived in [24] for
the convergence of GCP-PPA. Moreover, as pointed in [24], GCP-PPA is equivalent to
CP-PPA for solving the the convex programming min{ f (x) | Kx = b, x ∈ X }.

• Case 5 (G-AFBA for multi-block problem). Consider the following saddle-point
problem with multi-block structure:

min
x∈Rn

max
λ∈Rm

L(x, λ) :=
q∑

i=1

fi (xi) + 〈Kx, λ〉 − 〈b, λ〉, (4.6)

where each fi , i = 1, . . . , q , is a proper lower semicontinuous convex function, x =
(x1, · · · , xq)� with xi ∈ R

ni , K = (A1, · · · , Aq) is given with Ai ∈ R
m×ni and

n = ∑q
i=1 ni . Clearly, the problem (4.6) is a special case of (1.1) and is the dual problem

of the following multi-block separable convex optimization problem

min

{ q∑

i=1

fi (xi)
∣
∣
∣

q∑

i=1

Ai xi = b, xi ∈ R
ni

}

. (4.7)

123

Journal of Scientific Computing (2025) 102 :80 Page 17 of 33 80

Applying G-AFBA (1.8) to (4.6) results in the following operator splitting method:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄ k+1
i = arg min

xi∈Rni
fi (xi) + 1

2τ

∥
∥xi − xki + τ Ai

�λk
∥
∥2, i = 1, · · · , q,

λ̄k+1 = λk + σ
q∑

i=1
Ai

[
x̄ k+1
i + α(x̄ k+1

i − xki)
] − b,

xk+1
i = x̄ k+1

i − (1 − α)μ τ Ai
�(λ̄k+1 − λk), i = 1, · · · , q,

λk+1 = λ̄k+1 + (1 − α)(1 − μ) σ
q∑

i=1
Ai (x̄

k+1
i − xki).

(4.8)

Note that the above scheme (4.8) updates the primal variable xi in parallel and is different
from the proximal ADMM proposed [16] for solving (4.7). However, by our previous
analysis, the scheme (4.8) will enjoy all the convergent properties we discussed before.

5 More Extensions

In this section, we would give an adaptive and a stochastic versions of G-AFBA, and we
briefly discuss their convergence properties.

5.1 Extension to an Adaptive G-AFBA

Our adaptive G-AFBA (see Algorithm 5.1) as well as its convergence theory are motivated
from an adaptive PDHG (a-PDHG) developed in [20]. In fact, a-PDHG can be considered
as a special case of aG-AFBA, which is almost identical to G-AFBA except using adap-
tive stepsizes (τk, σk). In particular, in Algorithm 5.1, the stepsizes (τk, σk) are adjusted
according to the ratio between the PrimalError(k) (error related to x-variable at the k-th
iteration) and DualError(k) (error related to y-variable at the k-th iteration), which can
be defined/chosen by the user in various ways such that problem (1.1) is solved as long
as max{PrimalError(k),DualError(k)} = 0. The goal is to adaptively adjust the stepsizes
(τk, σk) so that both the primal error and the dual error can be reduced in a balanced way.
Hence, the overall acceleration of Algorithm 5.1 can be achieved. Moreover, it is not difficult
to show (one may see [20] for details) the stepsizes (τk, σk) in Algorithm 5.1 satisfy the
following conditions:

(A1) Both {τk} and {σk} are positive, bounded, and the product τkσk = τ0σ0 := Cτσ

satisfying (1.9);

(A2) The sequence {φk} is summable, where φk = max
{

τk−τk+1
τk

,
σk−σk+1

σk
, 0

}
.

123

80 Page 18 of 33 Journal of Scientific Computing (2025) 102 :80

Algorithm 5.1: An adaptive G-AFBA (aG-AFBA).

Initialization: Choose (x0, y0) ∈ X × Y and (τ0, σ0) satisfying (1.9), set α,μ ∈ [0, 1],
θ0 = η = 0.95 and γ1 > 1 > γ2 > 0, given ε > 0.

for k = 0, 1, · · ·
1. x̃ k = arg min

x∈X f (x) + 1
2τk

∥
∥x − xk + τk K�yk

∥
∥2;

2. ỹk = argmin
y∈Y g(y) + 1

2σk

∥
∥y − yk − σk K [x̃ k + α(x̃ k − xk)]∥∥2;

3. xk+1 = x̃ k − (1 − α)μτk K�(ỹk − yk);
4. yk+1 = ỹk + (1 − α)(1 − μ)σk K (x̃ k − xk);
5. if DualError(k) > γ1 PrimalError(k), then
6. τk+1 = τk(1 − θk), σk+1 = σk/(1 − θk), θk+1 = θkη;
7. else if DualError(k) < γ2 PrimalError(k), then
8. τk+1 = τk/(1 − θk), σk+1 = σk(1 − θk), θk+1 = θkη;
9. end if
10. if max {DualError,PrimalError} ≤ ε, break;
end for
Return (xk+1, yk+1).

To analyze global convergence of aG-AFBA, analogous to the previous analysis in Sect. 3,
let us define the following matrices:

Qk =
[

1
τk
I −K T

−αK 1
σk
I

]

, Mk =
[

I −(1 − α)μτk K T

(1 − α)(1 − μ)σk K I

]

,

Hk = QkM
−1
k =

[
Tk −(1 − μ + αμ)K T

−(1 − μ + αμ)K 	k

] [
C−1
x 0
0 C−1

y

]

,

where

Tk = 1

τk

(
I + (1 − α)(1 − μ)Cτσ K

TK
)
, 	k = 1

σk

(
I − (1 − α)αμCτσ KK T

)
,

and

Cx = I + (1 − α)2(1 − μ)μCτσ K
TK , Cy = I + (1 − α)2(1 − μ)μCτσ KK T.

In addition, we define

Pk =
[
Tk 0
0 	k

] [
C−1
x 0
0 C−1

y

]

=
[
TkC−1

x 0
0 	kC−1

y

]

.

Both Cx and Cy are symmetric positive definite, so does their inverse. By Proposition 2.1,
Hk is symmetric and positive definite. Hence, we have TkC−1

x and	kC−1
y are symmetric and

positive definite, and (K TC−1
y)T = KC−1

x .

Based on the above preparations, we next show that the sequence {uk − u∗} is upper
bounded, which is essential for deriving the convergence rate of aG-AFBA.

Lemma 5.1 Suppose the parameters τk and σk in aG-AFBA satisfy the assumptions (A1)–
(A2). Then, we have

‖uk − u∗‖2Pk ≤ cu (5.1)

for some upper bound cu > 0.

123

Journal of Scientific Computing (2025) 102 :80 Page 19 of 33 80

Proof Since τkσk = Cτσ satisfies (1.9), byProposition 2.1, Hk is positive definite. In addition,
there exists an ε ∈ (0, 1) independent of k such that (τ̃k, σ̃k) still satisfies (1.9), where
τ̃k = τk/(1 − ε) and σ̃k = σk/(1 − ε). Hence, similar to Proposition 2.1, Hk − εPk is still
positive definite for all k ≥ 0. Since Hk is positive definite, for any u ∈ X × Y we have

uTHku ≥ 0 ⇐⇒ uTPku ≥ 2(1 − μ + αμ)yTKC−1
x x .

Then, we have from Hk − εPk being positive definite that

cH‖u‖2Hk
≥ 2(1 − μ + αμ)yTKC−1

x x, (5.2)

for any k ≥ 0 and any u ∈ X ×Y , where cH = 1/ε. By taking u = (xk+1 − x∗, yk+1 − y∗)
and Hk+1 in the above inequality, we have

2(1 − μ + αμ)(yk+1 − y∗)TKC−1
x (xk+1 − x∗) ≤ cH‖uk+1 − u∗‖2Hk+1

.

So, from the above inequality, (K TC−1
y)T = KC−1

x , (3.7) and (5.2), we have

‖uk − u∗‖2Hk
≥ ‖uk+1 − u∗‖2Hk

= ‖uk+1 − u∗‖2Pk − 2(1 − μ + αμ)(yk+1 − y∗)TKC−1
x (xk+1 − x∗)

≥ δk‖uk+1 − u∗‖2Pk+1
− 2(1 − μ + αμ)(yk+1 − y∗)TKC−1

x (xk+1 − x∗)

= δk‖uk+1 − u∗‖2Hk+1
− 2(1 − δk)(1 − μ + αμ)(yk+1 − y∗)TKC−1

x (xk+1 − x∗)

≥ δk‖uk+1 − u∗‖2Hk+1
− cH (1 − δk)‖uk+1 − u∗‖2Hk+1

= {
1 − φk

[
1 + cH

]} ‖uk+1 − u∗‖2Hk+1
,

where the second inequality uses

Tk = τk+1

τk
Tk+1, 	k = σk+1

σk
	k+1, δk := 1 − φk = min

{
τk+1

τk
,
σk+1

σk
, 1

}

,

and the second equality uses the relationship between Hk and Pk .
Since the sequence {φk} is summable, we have φk(1 + cH) ∈ (0, 1) for all k sufficiently

large. Hence, we assume, without loss of generality, that φk(1+ cH) ∈ (0, 1) for all k. Then,
it follows that

‖u0 − u∗‖2H0
≥

k−1∏

j=0

{
1 − φ j (1 + cH)

}‖uk − u∗‖2Hk
. (5.3)

Since
∑∞

j=0 φ j < ∞, we have
∏∞

j=0

{
1 − φ j (1 + c2)

} ≥ 1/c1 for some c1 > 0. So, we
have from (5.3) that

‖un − u∗‖2Hn
≤ c1‖u0 − u∗‖2H0

,

which together with Hn − εPn being positive definite gives (5.1). ��
Lemma 5.2 Let cu > 0 be given by Lemma 5.1 and cφ = ∑∞

k=0 φk . Then, under the
assumptions (A1) and (A2), we have

n∑

k=1

(
‖uk − u‖2Hk

− ‖uk − u‖2Hk−1

)
≤ 2cφ

(
cu + cp‖u − u∗‖2),

where cp is a constant such that ‖u − u∗‖2Pk ≤ cp‖u − u∗‖2.

123

80 Page 20 of 33 Journal of Scientific Computing (2025) 102 :80

Proof Since TkC−1
x and 	kC−1

y are positive definite, it follows from the definition of φk that
⎧
⎪⎪⎨

⎪⎪⎩

TkC−1
x − Tk−1C−1

x = τk−1 − τk

τk−1
TkC−1

x � φk−1TkC−1
x ,

	kC−1
y − 	k−1C−1

y = σk−1 − σk

σk−1
	kC−1

y � φk−1	kC−1
y .

Then, by the definitions of Hk and Pk and (5.1), we have

n∑

k=1

(
‖uk − u‖2Hk

− ‖uk − u‖2Hk−1

)

=
n∑

k=1

(
‖xk − x‖2

(Tk−Tk−1)C
−1
x

+ ‖yk − y‖2
(k−	k−1)C

−1
y

)

≤
n∑

k=1

φk−1‖uk − u‖2Pk ≤ 2
n∑

k=1

φk−1

(
‖uk − u∗‖2Pk + ‖u − u∗‖2Pk

)

≤ 2cφ

(
cu + cp‖u − u∗‖2) < ∞,

where the last inequality follows from the definition of cp such that ‖u−u∗‖2Pk ≤ cp‖u−u∗‖2
for all k. Note that such cp exists by Assumption (A1). ��
Theorem 5.1 Let x Nt = 1

t

∑t−1
k=0 x̃

k , yNt = 1
t

∑t−1
k=0 ỹ

k . Then, under the conditions given in
Lemma 5.2, for any u ∈ X × Y we have

L(xNt , y) − L(x, yNt) ≤ ‖u − u0‖2H0
+ 2cφcu + cφcp‖u − u∗‖2

2t
, (5.4)

where cφ, cu and cp are the same constants given in Lemma 5.2.

Proof Summing (3.14) over k = 0, 1, · · · , t − 1 together with Lemma 5.2, we obtain

2
t−1∑

k=0

[
L(x̃ k, y) − L(x, ỹk)

]

≤ ‖u − u0‖2H0
− ‖u − ut‖2Ht

+
t∑

k=1

(
‖u − uk‖2Hk

− ‖u − uk‖2Hk−1

)

≤ ‖u − u0‖2H0
− ‖u − ut‖2Ht

+ 2cφcu + 2cφcp‖u − u∗‖2,
which, by the convexity of f , g, the definitions of xNt and yNt , yields

L(xNt , y) − L(x, yNt) ≤ ‖u − u0‖2H0
− ‖u − ut‖2Ht

+ 2cφcu + 2cφcp‖u − u∗‖2
2t

and immediately gives (5.4). ��

5.2 Extension to a Stochastic G-AFBA

Now, let us consider the following case of special structured (1.1):

min
x∈X max

y∈Y f (x) + 〈Kx, y〉 − g(y), where f (x) = 1

N

N∑

j=1

f j (x) (5.5)

123

Journal of Scientific Computing (2025) 102 :80 Page 21 of 33 80

is an average of N Lipschitz continuously differentiable real-valued convex functions f j ,
j = 1, . . . , N , i.e., there exists a ν > 0 such that

‖∇ f j (x1) − ∇ f j (x2)‖ ≤ ν‖x1 − x2‖, ∀x1, x2 ∈ X .

Problem (5.5) often arises from machine learning applications, e.g. [4, 6], where N denotes
the sample size and f j (x) corresponds to the empirical loss on the j-th sample data. A
major difficulty for solving (5.5) in machine learning applications is that the sample size N
can be huge so that it is computationally prohibitive to evaluate either the function value
f or its gradient at each iteration. Hence, in this subsection, by extending the previous
analysis of deterministic G-AFBA, we aim to develop a stochastic version of G-AFBA, see
Algorithm 5.2, for solving the structured problem (5.5). In the following, we briefly discuss
the convergence properties of SG-AFBA following a similar approach proposed in [4].

Algorithm 5.2: A stochastic G-AFBA (SG-AFBA).

Initialization: choose (τ, σ) satisfying (1.9), α,μ ∈ [0, 1] and
initialize (x0, y0) ∈ X × Y, x̆0 = x0.

for k = 0, 1, · · ·
1. Choose mk > 0, ϑk > 0, and compute hk = xk − τK�yk ;
2. (x̃ k, x̆ k+1) = xsub(xk, x̆ k, ϑk,mk, hk);
3. ỹk = argmin

y∈Y g(y) + 1
2σ

∥
∥y − yk − σK [x̃ k + α(x̃ k − xk)]∥∥2;

4. xk+1 = x̃ k − (1 − α)μ τK�(ỹk − yk);
5. yk+1 = ỹk + (1 − α)(1 − μ) σK (x̃ k − xk);
end for
Return (xk+1, yk+1).

(x+, x̆+) = xsub(x1, x̆1, ϑk,mk, hk)
for t = 1, 2, . . . ,mk

1. Randomly select ξt ∈ {1, 2, . . . , N } with uniform probability;
2. βt = 2/(t + 1), γt = 2/(tϑk), x̂t = βt x̆t + (1 − βt)xt ;
3. dt = ĝt + et , where ĝt = ∇ fξt (̂xt) and et is a random vector

satisfying E
[
et
] = 0;

4. x̆t+1 = arg min
x∈X

〈
dt , x

〉 + γt
2

∥
∥x − x̆t

∥
∥2 + 1

2τ

∥
∥x − hk

∥
∥2;

5. xt+1 = βt x̆t+1 + (1 − βt)xt ;
end for
Return (x+, x̆+) = (xmk+1, x̆mk+1).

We first need to obtain a variational inequality analogous to (3.3) for establishing the
convergence of SG-AFBA. Note that the x̆t+1-subproblem in step 4 of subroutine xsub
amounts to

x̆t+1 = arg min
x∈X

〈
dt + K�yk, x

〉 + γt

2

∥
∥x − x̆t

∥
∥2 + 1

2τ

∥
∥x − xk

∥
∥2.

Hence, almost same to the proof of [4, Lemma 3.1], we have the following lemma.

Lemma 5.3 Let us define �t = 2/(t(t + 1)) and

φk(x) = f (x) + ψk(x), where ψk(x) = 1

2τ

∥
∥
∥x − xk

∥
∥
∥
2 + 〈K�yk, x〉. (5.6)

123

80 Page 22 of 33 Journal of Scientific Computing (2025) 102 :80

Then, for any x ∈ X and k with ϑk ∈ (0, 1/ν), we have

1

�t

[
φk(xt+1) − φk(x)

] ≤
{

θ1, t = 1,
1

�t−1

[
φk(xt) − φk(x)

] + θt , t ≥ 2, (5.7)

where for all t ≥ 1,

θt = 1

ϑk

[
‖x − x̆t‖2 − ‖x − x̆t+1‖2

]
− t

2τ
‖x − x̆t+1‖2 + t〈δt , x̆t − x〉 + ϑk t2

4

‖δt‖2
(1 − ϑkν)

,

(5.8)
and δt = ∇ f (x̂t) − dt .

Based on Lemma 5.3, we further establish the following result.

Lemma 5.4 Let δt be defined in Lemma 5.3, and suppose ϑk ∈ (0, 1/ν). Then the iterates
generated by SG-AFBA satisfy

f (x) − f (x̃ k)+〈
x − x̃ k, K�yk + 1

τ
(x̃ k − xk)

〉 ≥ ζ k, (5.9)

for all x ∈ X , where

ζ k = 2

mk(mk + 1)

[
1

ϑk

(∥
∥
∥x − x̆ k+1

∥
∥
∥
2 −

∥
∥
∥x − x̆ k

∥
∥
∥
2
)

−
mk∑

t=1

t〈δt , x̆t − x〉 − ϑk

4(1 − ϑkν)

mk∑

t=1

t2 ‖δt‖2
]

. (5.10)

Proof Let T = mk . Summing (5.7) over 1 ≤ t ≤ T and recalling that x̆ k = x̆1, x̃ k = xT+1,
and x̆ k+1 = x̆T+1, we obtain

1

�T

[
φk(x̃

k) − φk(x)
]

≤
T∑

t=1

θt = 1

ϑk

[∥
∥
∥x − x̆ k

∥
∥
∥
2 −

∥
∥
∥x − x̆ k+1

∥
∥
∥
2
]

− 1

2τ

T∑

t=1

t ‖x − x̆t+1‖2 +
T∑

t=1

t〈δt , x̆t − x〉 + ϑk

4(1 − ϑkν)

T∑

t=1

t2 ‖δt‖2 (5.11)

for any x ∈ X , where θt is defined in (5.8). Dividing xt+1 = βt x̆t+1 + (1 − βt)xt by �t

and exploiting the identity βt/�t = t yields (1/�t)xt+1 = (1/�t−1)xt + t x̆t+1. Sum this
equality over 2 ≤ t ≤ T and recall �1 = β1 = 1 to obtain

x̃ k = xT+1 = �T

{
1

�1
x2 +

T∑

t=2

t x̆t+1

}

= �T

{

x2 − x̆2 +
T∑

t=1

t x̆t+1

}

= �T

{
[
β1 x̆2 + (1 − β1)x1

] − x̆2 +
T∑

t=1

t x̆t+1

}

=
T∑

t=1

(t�T)x̆t+1. (5.12)

Since �T
∑T

t=1 t = 1 and ‖z − x‖2 is convex in z, it follows from (5.12) that

∥
∥
∥x̃ k − x

∥
∥
∥
2 ≤

T∑

t=1

(t�T) ‖x̆t+1 − x‖2 , ∀x ∈ X .

123

Journal of Scientific Computing (2025) 102 :80 Page 23 of 33 80

Plug the last inequality into (5.11) to obtain

1

�T

[

φk(x̃
k) − φk(x) + 1

2τ

∥
∥
∥x̃ k − x

∥
∥
∥
2
]

≤ 1

ϑk

[∥
∥
∥x − x̆ k

∥
∥
∥
2 −

∥
∥
∥x − x̆ k+1

∥
∥
∥
2
]

+
T∑

t=1

t〈δt , x̆t − x〉 + ϑk

4(1 − ϑkν)

T∑

t=1

t2 ‖δt‖2 . (5.13)

Now, by the definitions of φk and ψk in (5.6), we have
{

φk(x̃ k) − φk(x) = f (x̃ k) − f (x) + ψk(x̃ k) − ψk(x),

ψk(x̃ k) − ψk(x) = 〈
K�yk, x̃ k − x

〉 + 1
2τ

[
‖x̃ k − xk‖2 − ‖x − xk‖2

]
.

The identity (a − b)�(a−c) = 1
2

{‖a − c‖2 − ‖c − b‖2 + ‖a − b‖2}with a = x̃ k , b = xk ,
and c = x implies that

1

2

[‖x̃ k − xk‖2 − ‖x − xk‖2 + ‖x̃ k − x‖2] = (
x̃ k − xk

)�(
x̃ k − x

)
.

Insert all these relations in (5.13) andmake the substitutions T = mk and�T = 2/(T (T +1))
with simple transformation to obtain (5.9). ��

Now, replacing the inequality (3.4) by (5.9), under the condition (1.9), we will have from
the same proofs of Lemmas 3.1-3.2 that

θ(u)−θ(ũk)+〈
u−ũk,J (u)

〉 ≥ 1

2

(∥
∥u−uk+1

∥
∥2
H −∥

∥u−uk
∥
∥2
H

)+ 1

2

∥
∥uk−ũk

∥
∥2
G+ζ k, (5.14)

where H and G are positive definite matrices defined in (2.6). With the help of (5.14), we
have the following theorem.

Theorem 5.2 Let uT = (xT , yT) be defined in (3.12). If for some integers T > 0 and κ ≥ 0,
the following conditions hold for all k ∈ [κ, κ + T]: (I) ϑk ∈ (0, 1/(2ν)] and the sequence
{ϑkmk(mk + 1)} is nondecreasing; (II) E(‖δt‖2) ≤ ς2 for some ς > 0, where δt is defined
in Lemma 5.3. Then, under condition (1.9), for any u ∈ �, it has

E
[
θ(uT) − θ(u) + 〈

uT − u,J (u)
〉]

≤ 1

2(1 + T)

{

ς2
κ+T∑

k=κ

ϑkmk + 4

mκ (mκ + 1)ϑκ

∥
∥x − x̆κ

∥
∥2 + ∥

∥u − uκ
∥
∥2
H

}

. (5.15)

Proof Summing the inequality (5.14) over k between κ and κ + T , using the convexity of θ

and the definition of uT , we can obtain

θ(uT) − θ(u) + 〈
uT − u,J (u)

〉 ≤ 1

1 + T

{
1

2
‖u − uκ‖2H −

κ+T∑

k=κ

ζ k

}

. (5.16)

By assumption (I), the sequence {ϑkmk(mk + 1)} is nondecreasing for k ∈ [κ, κ +T], which
implies

κ+T∑

k=κ

1

mk(mk + 1)ϑk

(‖x − x̆ k‖2 − ‖x − x̆ k+1‖2) ≤ ‖x − x̆κ‖2
mκ (mκ + 1)ϑκ

. (5.17)

The definition of δt in Lemma 5.3 gives

δt = ∇ f (x̂t) − dt = ∇ f (x̂t) − ∇ fξt (x̂t) − et .

123

80 Page 24 of 33 Journal of Scientific Computing (2025) 102 :80

Then, because the random variable ξt ∈ {1, 2, . . . , N } is chosen with uniform probability
and E[et] = 0, it holds that E[δt] = 0. Thus, since δt only depends on the index ξt while x̆t
depends on ξt−1, ξt−2, . . ., we have E

[〈δt , x̆t − x〉] = 0. Then, it follows from E(‖δt‖2) ≤
ς2 from assumption (II) and mk ≥ 1 that

E

[mk∑

t=1

t2‖δt‖2
]

≤ ς2mk(mk + 1)(2mk + 1)

6
≤ m2

k(mk + 1)

(
ς2

2

)

.

So, by ζ k defined in (5.10) and the condition ϑk ≤ 1/(2ν), we have

−E

[
κ+T∑

k=κ

ζ k

]

≤ 2‖x − x̆κ‖2
mκ (mκ + 1)ϑκ

+ ς2

2

κ+T∑

k=κ

ϑkmk .

Applying the expectation operator to (5.16) together with this bound completes the proof. ��
Theorem 5.3 Suppose the conditions in Theorem 5.2 hold. Let

ϑk = min

{
c1

mk(mk + 1)
, c2

}

and mk = max
{�c3k��,m}

,

where c1, c2, c3 > 0, � ≥ 1 are constants and m > 0 is a given integer. Then, for every
u∗ = (x∗, y∗) ∈ �∗ and uT = (xT , yT) being defined in (3.12), we have

∣
∣E

[
L(xT , y∗) − L(x∗, yT)

]∣
∣ = ∣

∣E
[
θ(uT) − θ(u∗)

]∣
∣ = E�(T), (5.18)

where E�(T) = O(1/T) for � > 1 and E�(T) = O(T−1 log T) for � = 1.

Proof The proof is same as that of [4, Theorem 4.2] and thus is omitted here. ��
Notice that, when considering the sample size N = 1 and setting et = 0, SG-AFBA will

reduce to a deterministic algorithm to solve (1.1), while applying the subroutine xsub to
solve the prediction step (3.1a) inexactly. This inexact G-AFBA will be particularly useful
when the function f is not simple so that it is expensive or there is no closed-form solution
for calculating the prediction step (3.1a) exactly.

6 Numerical Experiments

6.1 Robust Principal Component Analysis

The robust principal component analysis problem, which arises from video surveillance and
face recognition [5, 8, 31, 41, 49] etc., aims at recovering the low-rank and sparse components
of a given matrix. Such a problem is often modeled [13] as

min
X ,Y∈Rm×n

{‖X‖∗ + λ‖Y‖1 | X + Y = C
}
, (6.1)

where C is the given data, ‖ · ‖∗ and ‖ · ‖1 denote the nuclear norm (the sum of all singular
values) and the l1-norm (the sumof absolute values of all entries) of amatrix, respectively, and
λ > 0 is a weight parameter. Clearly, (6.1) can be reformulated as the following saddle-point
problem

min
X ,Y∈Rm×n

max
Z∈Rm×n

‖X‖∗ + λ‖Y‖1 + 〈X + Y , Z〉 − 〈C, Z〉. (6.2)

123

Journal of Scientific Computing (2025) 102 :80 Page 25 of 33 80

We will test the proposed G-AFBA in (1.8), aG-AFBA in Algorithm 5.1 and G1-AFBA
(that is G-AFBA with α = 0 as shown in (4.3)) with other comparison algorithms by solving
(6.2) with λ = 1/

√
max(m, n) as suggested in [8] and four real data sets: Hall airport video

containing 300 144 × 176 frames, ShoppingMall video containing 350 256 × 320 frames,
Bootstrap video containing 200 120×160 frames, and Lobby video containing 200 128×160
frames. We use (α, μ) = (1/3, 1/2) as default values for G-AFBA, (γ1, γ2) = (1.5, 0.96)
for aG-AFBA, (α, μ) = (0, 1/2) for G1-AFBA and we choose (τ, σ) = (c1/

√
ι, c2/

√
ι) to

satisfy the condition (1.9), where c1, c2 > 0 are some constants satisfying c1c2 < 1 and

ι = α + (1 − μ + μ2)(1 − α)2 + √[α−(1 − μ + μ2)(1 − α)2]2 + 4α(1 − α)2

2
L

with L = 2. After tuning the parameters through the for loop (similar technique is used in
the comparative methods), we set c1 = 0.2 and c2 = 0.95/c1 for G-AFBA, aG-AFBA and
G1-AFBA, respectively, for this set of testing problems. The following are several compar-
ison algorithms where the parameters are also tuned and chosen to obtain the best possible
performance:

• Dual-Primal Balanced ALM (DP-BALM) with involved parameters (β1, β2, α, δ) =
(10, 10, 1, 10−3), which is suggested in [45, Section 5.2.2];

• Generalized PDHG (G-PDHG) with (τ, σ) = (c1/
√
0.75L, c2/

√
0.75L), where param-

eters (c1, c2) use the same setting as our G-AFBA to satisfy the condition 1
τσ

> 0.75L ,
which gives much better performance than the original setting given in [31, Section 5.4];

• PDHG (1.2) with (τ, σ) = (c1/
√
L, c2/

√
L) and (c1, c2) = (7.0711, 0.1245);

• aPDHG with the tuned (γ1, γ2) = (8, 2) and the same (τ, σ) used in PDHG as the initial
values, since these values give better performance than the suggested setting in [20];

• GCP-PPA (1.6) [24] with (α, μ) = (1/2, 0) and the same (c1, c2) as those for G-AFBA,
to satisfy the convergence condition (1.7).

• Extended G-AFBA (eG-AFBA) [46] with parameters (c1, c2) = (0.9899, 0.2121) to
satisfy the involved condition 1

τσ
> L/4.

All experiments are implemented in MATLAB R2018a and performed on a PC with
Windows 10 operating system, with an Intel i7-8700K CPU and 16GB RAM. All
algorithms start with initial iteration (X , Y , Z) = (0, 0, 0) and are terminated when
max{PrimalError(k),DualError(k)} < 10−4 is satisfied, where

PrimalError(k) :=
∥
∥Xk+1 − Xk

∥
∥
F + ∥

∥Y k+1 − Y k
∥
∥
F

τk(
∥
∥Xk

∥
∥
F + ∥

∥Y k
∥
∥
F + 1)

and

DualError(k) := ‖Xk+1 + Y k+1 − C‖F
‖C‖F .

Here, τk > 0 is the primal stepsize used at the k-th iteration by each comparison method.
Similar stopping criteria can be found in e.g. [31, 41, 49].

Table 2 reports the number of iterations (Iter), the computing time in seconds (Time(s)),
the PrimalError and DualError at the last iterate of the algorithms. Figure2 also visualizes
the background and foreground separations of the 10th frames of Hall airport, the 259th
frames of ShoppingMall, the 194th frames of Bootstrap, and the 80th frames of Lobby,
respectively. The results obtained by eG-AFBA, DP-BALM and PDHG are not shown since
they take significantly more iterations and CPU time than others. The computing results of
Table 2 demonstrate that aG-AFBA performs the best among all the comparison algorithms
in terms of CPU time and the iteration number; G-AFBA is slightly better than its special

123

80 Page 26 of 33 Journal of Scientific Computing (2025) 102 :80

Table 2 Numerical results of different algorithms for solving Problem (6.2)

Data Methods Iter Time(s) PrimalError DualError

G-AFBA 101 50.91 9.91e−5 5.69e−5

aG-AFBA 78 39.56 9.45e−5 6.93e−5

G1-AFBA 104 52.96 9.99e−5 5.50e−5

eG-AFBA 189 110.46 9.77e−5 9.94e−5

Hall airport GCP-PPA 120 55.84 9.82e−5 3.51e−5

DP-BALM 267 149.03 9.97e−5 7.13e−6

PDHG 170 99.67 9.98e−5 3.14e−6

a-PDHG 109 73.34 9.88e−5 7.85e−5

G-PDHG 121 58.70 9.95e−5 3.58e−5

G-AFBA 120 283.20 9.79e−5 9.70e−5

aG-AFBA 101 225.36 9.72e−5 9.80e−5

G1-AFBA 124 289.97 9.96e−5 9.35e−5

eG-AFBA 275 754.83 7.56e−5 9.92e−5

ShoppingMall GCP-PPA 131 298.28 9.76e−5 8.07e−5

DP-BALM 173 445.26 9.99e−5 1.34e−5

PDHG 146 322.40 9.78e−5 2.60e−5

a-PDHG 112 290.81 8.44e−5 9.98e−5

G-PDHG 133 304.64 9.76e−5 8.06e−5

G-AFBA 101 22.49 9.89e−5 2.87e−5

aG-AFBA 91 20.89 9.79e−5 9.59e−5

G1-AFBA 104 23.59 9.92e−5 2.76e−5

eG-AFBA 171 44.86 9.97e−5 9.27e−5

Bootstrap GCP-PPA 119 24.19 9.89e−5 1.67e−5

DP-BALM 296 68.03 9.97e−5 7.03e−6

PDHG 181 42.99 9.94e−5 2.41e−6

a-PDHG 166 35.62 9.94e−5 7.07e−5

G-PDHG 120 24.17 9.98e−5 1.68e−5

G-AFBA 103 26.61 9.90e−5 1.32e−5

aG-AFBA 91 23.64 6.89e−5 9.82e−5

G1-AFBA 107 27.47 9.97e−5 1.37e−5

eG-AFBA 188 55.02 9.35e−5 9.93e−5

Lobby GCP-PPA 129 29.74 9.83e−5 6.67e−6

DP-BALM 359 93.01 9.95e−5 7.96e−6

PDHG 213 47.76 9.99e−5 2.57e−6

a-PDHG 152 42.39 9.81e−5 3.17e−5

G-PDHG 130 30.12 9.87e−5 6.53e−6

123

Journal of Scientific Computing (2025) 102 :80 Page 27 of 33 80

Fig. 2 Background and foreground separations of the 10th frame (rows 1–3) of Hall airport, the 259th frame
(rows 4–6) of ShoppingMall, the 194th frame (rows 7–9) of Bootstrap, and the 80th frame (rows 10–12) of
Lobby. From left to right: G-AFBA, G1-AFBA, GCP-PPA, G-PDHG, a-PDHG aG-AFBA, respectively

123

80 Page 28 of 33 Journal of Scientific Computing (2025) 102 :80

Fig. 3 Convergence curves of PrimalError(k) and ‖uk − u∗‖ obtained by G-AFBA

case G1-AFBA and usually better than other comparison algorithms. Although there are
more relaxed stepsize requirements of eG-AFBA for ensuring convergence, eG-AFBA seems
to take more iteration numbers and CPU time. We think this may be due to the different
strategies used by the correction step of eG-AFBA that requires inversion of amatrix. Besides,
the two adaptive methods (a-PDHG and aG-AFBA) clearly improve the performance of
its original version, which verifies the effectiveness of adaptively adjusting the proximal
stepsizes. Figure3 depicts the convergence curves of PrimalError(k) and ItError(k) := ‖uk −
u∗‖/(‖u∗‖ + 1) obtained by G-AFBA on the four data sets, where u∗ = (X∗, Y ∗, Z∗) is the
approximate solution obtained by running G-AFBA after 300 iterations, which demonstrates
the convergence rates in Theorem 3.3 and (3.24), respectively.

6.2 3D CT Reconstruction Problem

The 3D CT reconstruction problem is a crucial problem in medical imaging and plays a
vital role in diagnosis, treatment planning, and research [7, 19]. The problem with TV-L1

regularization is formulated as the following

min
x,y

1
N

∑N
j=1(R j x − b j)

2 + λ‖y‖1
s.t. ∇x = y,

(6.3)

where λ > 0 is a weight parameter, R is the Radon transform generated by the cone beam
scanning geometry [19], b is the observed noisy input data, and ∇ is a discrete gradient
operator. The primal-dual formulation of (6.3), as a special case of (5.5), can be written as

min
x,y

max
z

1

N

N∑

j=1

(R j x − b j)
2 + λ‖y‖1 + 〈∇x, z〉 − 〈y, z〉. (6.4)

When N is sufficiently large, e.g. N = 131, 334, 144 in our numerical experiment, the
computation of the prediction step (3.1a) of applying G-AFBA to solve (6.4) becomes pro-
hibitively expensive. Hence, we would apply the stochastic gradient based SG-AFBA, that is

123

Journal of Scientific Computing (2025) 102 :80 Page 29 of 33 80

Table 3 The mean and standard
deviation of PSNR and Res from
solving (6.3)

Methods PSNR Res

sto-ADMM 24.8068 ± 0.0013 0.4099 ± 6.29e−05

G-ADMM 24.8493 ± 0.0059 0.4079 ± 2.79e−04

SARAH-ADMM 24.9106 ± 0.0041 0.4051 ± 1.93e−04

SAGA-ADMM 24.8810 ± 0.0017 0.4064 ± 7.72e−05

PDHG 25.0356 ± 0.0396 0.3993 ± 1.82e−03

CP-PPA 24.9976 ± 0.0719 0.4010 ± 3.32e−03

SG-AFBA 25.1245 ± 0.1256 0.3952 ± 5.74e−03

Algorithm 5.2, to solve (6.4) with λ = 0.1. We set (α, μ) = (1/2, 0), (τ, σ) = (102, 10−7)

and mk = 10 for SG-AFBA. Hence, in this case, SG-AFBA is in fact a stochastic version of
GCP-PPA. The reconstructed image quality is usually evaluated by the Peak Signal-to-Noise
Ratio (PSNR):

PSNR = 10 log10

(
dx × dy × dz

MSE

)

with MSE = ‖x − x̃‖2,

where x and x̃ are the original and reconstructed 3D images, respectively. We also denote
the relative error by Res = ‖x − x̃‖/‖x‖.

For comparison purpose, we solve the reformulation problem (6.4) by the deterministic
Generalized ADMM (G-ADMM, [17]) and 5 stochastic gradient-based methods: stochas-
tic ADMM (sto-ADMM, [27]), stochastic ADMM based on the popular SARAH gradient
estimator (called SARAH-ADMM, [7]) and the SAGA gradient estimator (called SAGA-
ADMM, [7]), PDHG (1.2) and CP-PPA (1.4). All experiments are run in MATLAB R2019a
on a high-performance computational cluster with a Tesla V100 GPU and 192GB memory.
For each algorithm, we run 3 times to solve (6.4) with a 2000-second time budget for each
run.

Table 3 shows the mean and standard deviation of the final PSNR and Res obtained by
each algorithm over 3 independent runs. We can see from Table 3 that SG-AFBA has overall
better performance, achieving the highest PSNR and the lowest relative error Res, although
it has relatively larger standard deviation on the PSNR value. In addition, both PDHG and
CP-PPA perform better than other ADMM-type methods from the final obtained PSNR.
Figure 4 shows the average convergence curve of PSNR of each algorithm within 2000s.
From Figure 4 we see that although SARAH-ADMM converges faster than other algorithms
at the beginning iterations (see the left-hand-side of Figure 4), SG-AFBA seems to generate
the best final result. Figures5 and 6 visualize the 7th and 58th slices of the reconstructed 3D
CT image, respectively. It shows that the images reconstructed by SG-AFBA are closer to the
ground truth compared to other algorithms. Taking the 7th slice of the reconstructed 3D CT
image as an example,many blurry circle contours can be observed in the images reconstructed
by comparative algorithms sto-ADMM, SAGA-ADMM, SARAH-ADMM and G-ADMM.
However, these circular contours are not clear in the images reconstructed by our SG-AFBA.
Similar observations can be also seen from the 58th slice.

123

80 Page 30 of 33 Journal of Scientific Computing (2025) 102 :80

Fig. 4 Comparison of different algorithms for solving (6.3)

Fig. 5 Final reconstruction images of different methods for the 7th slice

123

Journal of Scientific Computing (2025) 102 :80 Page 31 of 33 80

Fig. 6 Final reconstruction images of different methods for the 58th slice

Acknowledgements The authors would like to thank the anonymous referees for providing very constructive
comments, which have significantly improved the quality of the paper.

Funding This research was supported by the National Natural Science Foundation of China (12471298,
12171479), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (23JSQ031),
the National Social Science Fund of China (22BGL118), and the MOE Project of Key Research Institute of
Humanities and Social Sciences (22JJD110001).

Data Availability The data that support the findings of this study are available from the corresponding author
upon reasonable request.

Declarations

Conflict of interest The authors have not disclosed any Conflict of interest.

References

1. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming, Stanford Mathemat-
ical Studies in the Social Sciences, vol. II. Stanford University Press, Stanford (1958)

2. Banert, S., Upadhyaya,M., Giselsson, P.: The Chambolle–Pock method converges weakly with θ>1/2
and τσ‖L‖2<4/(1 + 2θ) (2023). arXiv:2309.03998v1

3. Bai, J., Chang, X., Li, J., Xu, F.: Convergence revisit on generalized symmetric ADMM. Optimization
70, 149–168 (2021)

4. Bai, J., Hager,W., Zhang,H.:An inexact accelerated stochasticADMMfor separable convex optimization.
Comput. Optim. Appl. 81, 479–518 (2022)

5. Bai, J., Jia, L., Peng, Z.: A new insight on augmented Lagrangian method with applications in machine
learning. J. Sci. Comput. 99, 53 (2024)

6. Bai, J., Bian, F., Chang, X., Du, L.: Accelerated stochastic Peaceman–Rachford method for empirical risk
minimization. J. Oper. Res. Soc. China 11, 783–807 (2023)

7. Bian, F., Liang, J., Zhang, X.: A stochastic alternating direction method of multipliers for non-smooth
and non-convex optimization. Inverse Prob. 37, 075009 (2021)

8. Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 1–37 (2011)
9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to

imaging. J. Math. Imaging Vision 40, 120–145 (2011)
10. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math.

Program. 159, 253–287 (2016)

123

http://arxiv.org/abs/2309.03998v1

80 Page 32 of 33 Journal of Scientific Computing (2025) 102 :80

11. Chambolle, A., Ehrhardt, M., Richtarik, P., Schonlieb, C.: Stochastic primal-dual hybrid gradient
algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28, 2783–2808 (2018)

12. Chang, X., Yang, J., Zhang, H.: Golden ratio primal-dual algorithm with line search. SIAM J. Optim. 32,
1584–1613 (2022)

13. Chandrasekaran, V., Sanghavi, S., Parrilo, P., Willsky, A.: Rank-sparsity incoherence for matrix
decomposition. SIAM J. Optim. 21, 572–596 (2011)

14. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013)

15. Condat, L., Kitahara, D., Contreras, A., Hirabayashi, A.: Proximal splitting algorithms for convex
optimization: a tour of recent advances, with new twists. SIAM Rev. 65, 375–435 (2023)

16. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method
of multipliers. J. Sci. Comput. 66, 889–916 (2016)

17. Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algorithm
for maximal monotone operators. Math. Program. 55, 293–318 (1992)

18. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-
element approximations. Comput. Math. Appl. 2, 17–40 (1976)

19. Gao, H.: Fast parallel algorithms for the X-ray transform and its adjoint. Med. Phys. 39, 7110–7120
(2012)

20. Goldstein, T., Li, M., Yuan, X.: Adaptive primal-dual splitting methods for statistical learning and image
processing. NeurIPS, pp. 2089–2097 (2015)

21. Hayden, S., Stanley, O.: A low patch-rank interpretation of texture. SIAM J. Imaging Sci. 6, 226–262
(2013)

22. He, B., Yuan, X.: On the o(1/n) convergence rate of the Douglas–Rachford alternating direction method.
SIAM J. Numer. Anal. 50, 700–709 (2012)

23. He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imaging
Sci. 7, 2526–2537 (2014)

24. He, B., Ma, F., Xu, S., Yuan, X.: A generalized primal-dual algorithm with improved convergence
condition for saddle point problems. SIAM J. Imaging Sci. 15, 1157–1183 (2022)

25. He, B., Xu, S., Yuan, X.: On convergence of the Arrow–Hurwicz method for saddle point problems. J.
Math. Imaging Vision 64, 662–671 (2022)

26. He,X., Huang,N., Fang,Y.: Non-ergodic convergence rate of an inertial accelerated primal-dual algorithm
for saddle point problems. Commun. Nonlinear Sci. Numer. Simulat. 140, 108289 (2024)

27. Huang, F., Chen, S.: Mini-batch stochastic ADMMs for nonconvex nonsmooth optimization (2019).
arXiv: 1802.03284

28. Jiang, F., Cai, X., Wu, Z., Han, D.: Approximate first-order primal-dual algorithms for saddle point
problems. Math. Comput. 90, 1227–1262 (2021)

29. Jiang, F., Wu, Z., Cai, X., Zhang, H.: A first-order inexact primal-dual algorithm for a class of convex-
concave saddle point problems. Numer. Algor. 88, 1109–1136 (2021)

30. Jiang, F., Cai, X., Han, D.: Inexact asymmetric forward–backward–adjoint splitting algorithms for saddle
point problems. Numer. Algor. 94, 479–509 (2023)

31. Jiang, F., Zhang, Z., He, H.: Solving saddle point problems: a landscape of primal-dual algorithm with
larger stepsizes. J. Glob. Optim. 85, 821–846 (2023)

32. Korpelevič, G.: An extragradient method for finding saddle points and for other problems. Èkon. Mat.
Metody 12, 747–756 (1976)

33. Latafat, P., Patrinos, P.: Asymmetric forward–backward–adjoint splitting for solvingmonotone inclusions
involving three operators. Comput. Optim. Appl. 68, 57–93 (2017)

34. Li, Z., Yan, M.: New convergence analysis of a primal-dual algorithm with large stepsizes. Adv. Comput.
Math. 47, 1–20 (2021)

35. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal.
16, 964–979 (1979)

36. O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient method and
Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020)

37. Polyak, B.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phy. 4, 1–17 (1964)

38. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (2015)
39. Robinson, S.: Some Continuity Properties of Polyhedral Multifunctions. Mathematical Programming at

Oberwolfach, pp. 206–214. Springer, Berlin (1981)
40. Sun, H., Tai, X., Yuan, J.: Efficient and convergent preconditioned ADMM for the Potts models. SIAM

J. Sci. Comput. 43, B455–B478 (2021)

123

http://arxiv.org/abs/1802.03284

Journal of Scientific Computing (2025) 102 :80 Page 33 of 33 80

41. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy
observations. SIAM J. Optim. 21, 57–81 (2011)

42. Vũ, B.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput.
Math. 38, 667–681 (2013)

43. Wang, N., Li, J.: A class of preconditioners based on symmetric-triangular decomposition and matrix
splitting for generalized saddle point problems. IMA J. Numer. Anal. 43, 2998–3025 (2023)

44. Xian, W., Huang, F., Zhang, Y., Huang, H.: A faster decentralized algorithm for nonconvex minimax
problems. NeurIPS (2021). https://openreview.net/forum?id=rjIjkiyAJao

45. Xu, S.: A dual-primal balanced augmented Lagrangian method for linearly constrained convex
programming. J. Appl. Math. Comput. 69, 1015–1035 (2023)

46. Xu, S.: A search direction inspired primal-dual method for saddle point problems. Optimization Online
(2020). https://optimization-online.org/2019/11/7491/

47. Xu, Z., Zhang, H., Xu, Y., Lan, G.: A unified single-loop alternating gradient projection algorithm for
nonconvex-concave and convex-nonconcave minimax problems. Math. Program. 201, 635–706 (2023)

48. Yang, J., Zhang, Y.: Alternating direction algorithms for �1-problems in compressive sensing. SIAM J.
Sci. Comput. 33, 250–278 (2011)

49. Yang, L., Pong, T., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and
nonsmooth problems with applications to background/foreground extraction. SIAM J. Imaging Sci. 10,
74–110 (2017)

50. Zhang, X., Burger,M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration.
J. Sci. Comput. 46, 20–46 (2011)

51. Zhu, M., Chan, T.: An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image
Restoration, CAM Report 08-34. UCLA, Los Angeles, CA (2008)

52. Zhu, Y., Liu, D., Dinh, Q.: New primal-dual algorithms for a class of nonsmooth and nonlinear convex–
concave minimax problems. SIAM J. Optim. 32, 2580–2611 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://openreview.net/forum?id=rjIjkiyAJao
https://optimization-online.org/2019/11/7491/

	Generalized Asymmetric Forward–Backward–Adjoint Algorithms for Convex–Concave Saddle-Point Problem
	Abstract
	1 Introduction
	1.1 Notation
	1.2 Related Work
	1.3 The Algorithm and Contribution
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Reformulation of the Saddle-Point
	2.2 Some Matrices and Properties

	3 Convergence Analysis
	3.1 Global Convergence
	3.2 Sublinear Rate of Convergence
	3.3 Linear Rate of Convergence

	4 Connections Between (1.8) and Other Related Methods
	5 More Extensions
	5.1 Extension to an Adaptive G-AFBA
	5.2 Extension to a Stochastic G-AFBA

	6 Numerical Experiments
	6.1 Robust Principal Component Analysis
	6.2 3D CT Reconstruction Problem

	Acknowledgements
	References

