
1

A Decentralized Primal-Dual Method with
Quasi-Newton Tracking

Liping Wang, Hao Wu, and Hongchao Zhang

Abstract—This paper considers the decentralized optimization
problem of minimizing a finite sum of strongly convex and
twice continuously differentiable functions over a fixed-connected
undirected network. A fully decentralized primal-dual method
(DPDM) and its generalization (GDPDM), which allows for
multiple primal steps per iteration, are proposed. In our methods,
both primal and dual updates use second-order information
obtained by quasi-Newton techniques which only involve matrix-
vector multiplication. Specifically, the primal update applies a
Jacobi relaxation step using the BFGS approximation for both
computation and communication efficiency. The dual update
employs a new second-order correction step. We show that
the decentralized local primal updating direction on each node
asymptotically approaches the centralized quasi-Newton direc-
tion. Under proper choice of parameters, GDPDM including
DPDM has global linear convergence for solving strongly convex
decentralized optimization problems. Our numerical results show
both GDPDM and DPDM are very efficient compared with other
state-of-the-art methods for solving decentralized optimization.

Index Terms—Decentralized optimization, primal-dual
method, quasi-Newton method, BFGS update, BB method,
global convergence, linear convergence rate.

I. INTRODUCTION

IN this paper, we consider the following decentralized
optimization problem over an undirected and connected

network containing n nodes

z∗ = arg min
z∈Rp

n∑
i=1

fi(z), (1)

where the local objective function fi : Rp → R, i = 1, . . . , n,
on each node is strongly convex and twice continuously differ-
entiable. Consider the underlying network G = (V, E), where
V = {1, . . . , n} is the set of nodes, and E is the collection of
unordered edges. We denote two nodes as neighbors if they are
connected by an edge. In a decentralized setting, there does
not exist one central server to gather local information from
all nodes, compute shared global information, and broadcast
it back to the whole network. Each local function fi is only
known to node i. All the nodes collaborate with their neighbors
through information exchange (i.e., communication) to finally
obtain the global solution z∗. Decentralized optimization has
wide applications including decentralized resources control

Liping Wang and Hao Wu are in School of Mathematics, Nanjing
University of Aeronautics and Astronautics (e-mail: wlpmath@nuaa.edu.cn;
wuhoo104@nuaa.edu.cn).

Hongchao Zhang is in Department of Mathematics, Louisiana State Uni-
versity (e-mail: hozhang@math.lsu.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the authors. The material includes
additional mathematical derivations and experiments.

[1], wireless networks [2], decentralized machine learning [3],
power systems [4], federated learning [5], etc..

As more important practical applications surge up, the de-
centralized optimization methods have been extensively stud-
ied in recent years, where first-order methods gain attention
very rapidly due to their simple iterative schemes and low
computational cost per iteration. The decentralized gradient
descent (DGD) [6]–[8] methods are a class of the most well-
known first-order methods for solving decentralized optimiza-
tion. However, DGD methods usually converge to the optimal
solution only with a diminishing step size, while a small
constant stepsize often leads the iterate to a neighborhood
of the minimizer [7]. There are many recent works devoted
to a constant step size with guaranteed convergence. By
significantly increasing the number of communication steps,
the DGD method [9] achieves global convergence with R-
linear rate. To ensure global convergence, EXTRA [10], [11]
as well as its modification, called NIDS [12], adopts different
mixing matrices at odd and even iterations. The method given
in [13] combines the diffusion strategy with an important
subclass of left-stochastic matrices to obtain wider stability
region and enhanced performance than EXTRA. Gradient
Tracking (GT) methods [14]–[18] track the global average
gradient to design local search directions at any node. An
effective approach to achieve global convergence is to design
the methods in the primal-dual domain. A general method
given in [19] unified EXTRA and GT into a primal-dual
framework. A more flexible first-order primal-dual framework
is proposed in [20], where multiple primal steps per iteration
are allowed. In addition, there are also some special classes of
primal-dual methods based on alternating direction approaches
[21]–[23].

Although first-order methods are more simple and easily
implementable, their asymptotic convergence speed is often
slow for more accurate solutions. So, many second-order
methods have been proposed recently to accelerate the conver-
gence rate. Some methods focus on penalized approaches for
solving a constrained problem, where a consensus constraint
is introduced to reformulate the problem (1). NN [24] uses
the Newton’s method to solve the penalty problem. DQN
[25] develops a diagonal correction technique to overcome
the challenge that the Hessian inverse of the penalty func-
tion can not be computed in a decentralized way. DBFGS
[26] is a decentralized quasi-Newton method which only
uses the local neighbor information. However, NN, DQN,
and DBFGS are inexact penalty methods in the sense that
the penalty parameter needs to go to infinity for ensuring
global convergence. ESOM [27], PMM-DQN [25], and PD-

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

2

QN [28] improve NN, DQN, and DBFGS, respectively, in the
primal-dual framework. Newton Tracking (NT) [29] is also
developed in the primal-dual domain, where the local search
directions asymptotically track the global centralized Newton
direction. A decentralized ADMM [30] incorporates BFGS
quasi-Newton techniques to improve computation efficiency,
and the quadratically approximated ADMM given by [31] was
improved in [32] to promote communication efficiency. Two
decentralized stochastic quasi-Newton methods are proposed
in [33], where average gradient approximations are used with
regularization or damping techniques to construct the Hessian
inverse approximations. Another method [34] with the same
name as DQN is relevant to methods in [33] but extended to
the equality-constrained optimization setting.

Among all the previously developed primal-dual methods,
there are rarely methods applying second-order information in
the dual update. Moreover, when combining the quasi-Newton
techniques into the decentralized methods in the primal-dual
framework, some critical issues may arise. First, the local
quasi-Newton matrices generated by the BFGS approximation
are not necessarily positive definite although the augmented
Lagrangian function across all nodes is strongly convex.
Second, when the primal problem is solved inexactly, the
exact dual gradient is not obtained. Extracting useful Hessian
information from inexact dual gradients also needs to be
studied. Our goal of this paper is to explore second-order
information in both primal and dual domains, and propose
a new fully decentralized primal-dual quasi-Newton method
with both theoretical global linear convergence and numerical
efficiency. Our main contributions are as follows.

1. In the primal domain, we combine the Jacobi relaxation
technique with the BFGS approximation for updating
the primal iterates. Multiple adaptive primal updates per
iteration are also allowed in our approach to balance the
accuracy obtained in both the primal and dual domains.

2. In the dual domain, by applying the Newton’s method
to the dual problem and making some critical reformu-
lations, we obtain a novel dual updating step, which can
be viewed as adding a second-order correction term to
the usual dual ascent step. To maintain computational
efficiency, we apply BB-approximation techniques to
capture the spectral information of the dual Hessian. To
the best of our knowledge, we are the first to give a
primal-dual method using quasi-Newton dual update with
guaranteed convergence.

3. Our proposed method is a quasi-Newton tracking method,
where the local search direction on each node tracks
the global centralized quasi-Newton direction. Our quasi-
Newton tracking can be considered as a generalization of
the Newton tracking [29]. In addition, our approaches
only involve matrix-vector multiplications to avoid in-
verting a matrix. The numerical results show that our
methods are very efficient compared with other state-of-
the-art methods for solving decentralized optimization.

The paper organized is as follows: In Section 2, we reformu-
late the problem as a constrained decentralized optimization,
and develop our new methods. Global convergence as well as

linear convergence rate are established in Section 3. Numerical
experiments are performed in Section 4 to compare our method
with other well-established first and second-order methods
for solving decentralized optimization. Finally, we draw some
conclusions in Section 5.

A. Notation

We use uppercase and lowercase boldface letters to denote
matrices and vectors, respectively. We let xi denote the local
copy of the global variable z at node i and define Ni as the
set consisting of the neighbors of node i (we treat node i
itself as one of its neighbors for convenience.). x̄ denotes
1
n

∑n
i=1 xi. Kronecker Product is denoted as ⊗. Proj[a,b](·)

is the projection operator onto interval [a, b]. Given a vector v
and a symmetric matrix M, we let span(v) denote the linear
subspace spanned by v and ‖v‖2M denote vTMv. λmin(M),
λ2(M), and λmax(M) denote the smallest, second smallest,
and largest eigenvalues of M, respectively. Null(M) denotes
the null space of M. The trace and determinant of M is
denoted as tr(M) and det(M), respectively. MT denotes
transpose of M and M† denotes its pseudo inverse. For
matrices M1 and M2 with same dimension, M1 � M2

means M1 −M2 is positive definite. We use Ip to denote
the p × p identity matrix. Especially, I denotes Inp. We
let diag{a1, . . . , ap} denote a p × p diagonal matrix whose
diagonal elements are a1, . . . , ap, and log(·) denote log10(·).
For any scalar θ ∈ R, if θ 6= 0, IR\{0}(θ) = 1; otherwise,
IR\{0}(θ) = 0.

II. PROBLEM FORMULATION AND ALGORITHM
DEVELOPMENT

A. Problem Formulation

Since the network is connected, the constraints xi =
xj , i, j = 1, . . . , n, are equivalent to xi = xj , j ∈ Ni, i =
1, . . . , n. Therefore, the problem (1) can be reformulated as
the following constrained optimization

{x∗i }
n
i=1 = arg min

{xi}ni=1

n∑
i=1

fi(xi), (2)

s.t.xi = xj ,∀j ∈ Ni, i = 1, . . . , n.

The consensus constraints ensure the solution of problem (2)
is equal to the solution of (1) and x∗1 = x∗2 = . . . = z∗.

To reveal the network structure, we introduce a mixing
matrix W̃ ∈ Rn×n which has the following standard features.
1. W̃ is nonnegative and W̃ij characterizes the active link
(i, j), i.e., W̃ij > 0 if j ∈ Ni, W̃ij = 0 otherwise.
2. W̃ is symmetric and doubly stochastic, i.e., W̃ = W̃T and
W̃1n = 1n.

It has a few common choices for the mixing matrix W̃,
such as Laplacian-based constant edge weight matrix [35]
and Metropolis constant edge weight matrix [36]. From the
second feature, we have Null(In−W̃) = span(1n). Using the
mixing matrix W̃, we can rewrite problem (2) in an equivalent

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

3

compact form. Let us denote

x = [x1;x2; . . . ;xn] ∈ Rnp, f(x) =

n∑
i=1

fi(xi),

∇f(x) = [∇f1(x1);∇f2(x2); . . . ,∇fn(xn)] ∈ Rnp,
W = W̃ ⊗ Ip ∈ Rnp×np and I−W = (In − W̃)⊗ Ip.

We can easily know that the equation (I −W)x = 0 holds
if and only if x1 = x2 = . . . = xn. According to the Perron-
Frobenius theorem [37], the eigenvalues of W̃ lie in (−1, 1]
and 1 is the single eigenvalue. Since I −W is symmetric
positive semidefinite, (I−W)1/2 has the same null space as
I−W. Hence, problem (2) can be reformulated as

x∗ = arg min
x∈Rnp

f(x), (3)

s.t.(I−W)1/2x = 0.

In this paper, we have the following assumptions on the
objective function.

Assumption 1. The local gradients {∇fi(z)}ni=1 are Lipschitz
continuous with constant L > 0, i.e.,

‖∇fi(z)−∇fi(z̃)‖ ≤ L ‖z− z̃‖ , (4)

∀z, z̃ ∈ Rp, i = 1, . . . , n.

Assumption 2. The local objective functions {fi(z)}ni=1 are
strongly convex with modulus µ > 0, i.e.,

fi(z̃) ≥ fi(z) +∇fi(z)T(z̃− z) +
µ

2
‖z̃− z‖2, (5)

∀z, z̃ ∈ Rp, i = 1, . . . , n.

Combining Assumption 1 with Assumption 2, we have

µIp � ∇2fi(z) � LIp, ∀z ∈ Rp, i = 1, . . . , n. (6)

Since the Hessian ∇2f(x) is a block diagonal matrix whose
i-th diagonal block is ∇2fi(xi), the above bounds also hold
for ∇2f(x), that is

µI � ∇2f(x) � LI, ∀x ∈ Rnp. (7)

As discussed previously, primal-dual methods are effective
approaches to solving the problem (3). However, most existing
methods only use first-order information to update the dual
variables by employing a dual ascent step, such as

λt+1 = λt + α(I−W)
1/2

xt+1, (8)

where λt is the Lagrangian multiplier, also called dual vari-
able. In the following, we propose decentralized primal-dual
methods whose primal and dual updates will use second-
order information approximated by certain quasi-Newton tech-
niques.

B. Algorithm Development

The augmented Lagrangian function of the problem (3) is

L̃α(x,λ) = f(x)+
〈
λ, (I−W)

1/2
x
〉

+
α

2
xT(I−W)x, (9)

where λ = [λ1;λ2; . . . ;λn] ∈ Rnp, α > 0 is the penalty
parameter. (9) can be also viewed as the Lagrangian function
of the following penalized optimization

x∗ = arg min
x∈Rnp

f(x) +
α

2
xT(I−W)x, (10)

s.t.(I−W)1/2x = 0.

Obviously, the problem (10) is equivalent to the problem (3).
Let x∗(λ) denote the minimizer of L̃α(·,λ), i.e.,

x∗(λ) = arg min
x∈Rnp

L̃α(x,λ). (11)

The optimality condition of (11) gives

∇f(x∗(λ)) + (I−W)1/2λ + α(I−W)x∗(λ) = 0. (12)

For any λ∗ ∈ Rnp that satisfies (I −W)1/2x∗(λ∗) = 0,
(x∗(λ∗),λ∗) is an primal-dual solution of (10). We now apply
Netwon’s method to solve the feasibility system

(I−W)1/2x∗(λ) = 0. (13)

The t-th iteration of Netwon’s method gives

(I−W)1/2x∗(λt) (14)

+ (I−W)1/2

(
∂x∗(λ)

∂λ

)T

λ=λt

(
λt+1 − λt

)
= 0.

Differentiating (12) with respect to λ, we have(
∇2f(x∗(λ)) + α(I−W)

)(∂x∗(λ)

∂λ

)T

= −(I−W)1/2,

which gives(
∂x∗(λ)

∂λ

)T

λ=λt
= −

[
∇2

xxL̃α
(
x∗(λt),λt

)]−1

(I−W)1/2.

(15)
Substituting (15) into (14) yields

(I−W)1/2x∗(λt)− (I−W)1/2
[
∇2

xxL̃α
(
x∗(λt),λt

)]−1

(I−W)1/2
(
λt+1 − λt

)
= 0.

By letting xt+1 = x∗(λt), we have

λt+1 = λt +
(
Gt
)†

(I−W)1/2xt+1, (16)

where

Gt = (I−W)1/2
[
∇2

xxL̃α(xt+1,λt)
]−1

(I−W)1/2.

Solving the primal problem (11) exactly is not only nu-
merically expensive but also theoretically unnecessary. One
practical approach is to simply apply one Newton’s iteration
to the problem (11) and let

xt+1 =xt −
[
∇2

xxL̃α(xt,λt)
]−1 [

∇f
(
xt
)

(17)

+ (I−W)1/2λt + α(I−W)xt
]
.

Unfortunately, the iterative schemes (16) and (17) can not
be directly applied in the decentralized setting. Note that
∇2f(x) is a block diagonal matrix whose i−th diagonal block
is ∇2fi(xi) and W is a block sparse matrix related to the
network structure. Thus, the Hessian∇2

xxL̃α(x,λ) is neighbor

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

4

related in the calculation. However, the Hessian inverse as
well as (I −W)1/2 will destroy the neighbor relation. In
addition, it is often very expensive to calculate the inverse of
primal and dual Hessians in many practical computations. In
the following, we would like to modify the iterative schemes
(16) and (17) into a decentralized setting that can be also
computed in an efficient way.

a) Primal update: Note that (17) is equivalent to

xt+1 = xt − d̃t,

where d̃t satisfies

∇2
xxL̃α(xt,λt)d̃t = ∇xL̃α(xt,λt). (18)

We would solve the linear equations (18) inexactly by applying
the Jacobi relaxation technique [38], which is an effective
technique for the iterative method. By splitting the Hessian
∇2

xxL̃α(xt,λt) into two parts, ∇2f(xt) and α(I −W), the
k-th Jacobi relaxation iteration can be conducted by

d̂t,k+1 =θ
(
− α∇2f(xt)−1(I−W)d̂t,k

+∇2f(xt)−1∇xL̃α(xt,λt)
)

+ (1− θ)d̂t,k,

where

d̂t,0 = ∇2f(xt)−1∇xL̃α(xt,λt),

θ ∈ [0, 1] is the relaxation parameter, introduced to accelerate
the original Jacobi iteration. For both computation and com-
munication efficiency, our algorithm would only employ one
Jacobi iteration as the following:

d̂t,1 =θ
(
− α∇2f(xt)−1(I−W)dt,0

+∇2f(xt)−1∇xL̃α(xt,λt)
)

+ (1− θ)d̂t,0,

and let d̂t = d̂t,1 as the approximation to d̃t. Combining the
above steps, we obtain

d̂t =
(
I− θα∇2f(xt)−1(I−W)

)
∇2f(xt)−1∇xL̃α(xt,λt).

(19)

Note that if θ = 0, (19) reduces to

d̂t = ∇2f(xt)−1∇xL̃α(xt,λt), (20)

which is exactly primal update direction in NT [29] with the
parameter ε = 0. To avoid computing ∇2f(xt) and its inverse,
we would approximate ∇2f(xt) by a block positive definite
matrix Bt using BFGS quasi-Newton techniques. Then, by
introducing a stepsize β > 0 for global convergence, we have
the following primal update,

xt+1 =xt − β
[
I− θα(Bt)−1(I−W)

]
(21)

× (Bt)−1∇xL̃α(xt,λt).

More specifically, we update Bt by the following BFGS
formula

Bt+1 =

 Bt+1
1

...
Bt+1
n

 , (22)

where we set B0
i = Ip,

Bt+1
i = Bt

i −
Bt
is
t
i(s

t
i)

T
Bt
i

(sti)
T
Bt
is
t
i

+
yti(y

t
i)

T

(sti)
T
yti
, t ≥ 0, (23)

sti = xt+1
i − xti and yti = ∇fi(xt+1

i)−∇fi(xti).
We have some comments about Bt. First, since fi is

strongly convex, we have (sti)
Tyti > 0, which together with

the positive definite initialization of B0
i ensures Bt � 0 for

all t ≥ 0. Second, as usual, in practical implementation we
always directly update Ht := (Bt)−1. In particular, using the
BFGS inversion formula, we would have H0

i = (B0
i)
−1 and

Ht+1
i =Ht

i −
Ht
iy
t
i(s

t
i)

T + sti(y
t
i)

THt
i

(sti)
Tyti

(24)

+

(
1 +

(yti)
THt

iy
t
i

(sti)
Tyti

)
sti(s

t
i)

T

(sti)
Tyti

, t ≥ 0.

Note that Ht is applied in algorithm implementation while Bt

is only used in the paper for convenient theoretical analysis.
Finally, we want to emphasize that it is improper to use

BFGS techniques to directly approximate ∇2
xxL̃α(xt,λt) =

∇2f(xt) + α(I − W) in decentralized setting. Although
xT(I −W)x ≥ 0 for all x, its restriction on each node, i.e.,
(xi)

T
(
xi −

∑
j∈Ni W̃ijxj

)
may not be positive. This may

destroy the positive definite property of BFGS matrices.
b) Dual update: We first give the following lemma,

which can be considered as an extension of Lemma 1 in [39].

Lemma II.1. Let A ∈ Rm×n and rank(A) = r where r ≤
m ≤ n. Let M ∈ Rn×n be symmetric positive definite. Then[

A(M + ATA)−1AT
]†
A =

[
I + (AM−1AT)†

]
A, (25)

which further implies[
A(M + ATNA)−1AT

]†
A =

[
N + (AM−1AT)†

]
A,
(26)

where N ∈ Rm×m is any symmetric positive definite matrix.

Proof: See Section VI of the supplementary material.

Lemma II.2. Let A ∈ Rm×n and rank(A) = r where r ≤
m ≤ n. Let M ∈ Rn×n and N ∈ Rm×m be any symmetric
positive definite matrices. Then

lim
ε→0

A(εM + ATNA)−1AT = A(ATNA)†AT. (27)

Proof: See Section VII of the supplementary material.
Based on Lemma II.1, the iteration

λt+1 = λt +
(
Gt
)†

(I−W)1/2xt+1

can be equivalently written as

λt+1 = λt + α(I−W)1/2xt+1 +
(
G̃t
)†

(I−W)1/2xt+1,

(28)
where

G̃t = (I−W)1/2(∇2f(xt+1))−1(I−W)1/2.

Without the last term, (28) is just the dual ascent step of
the standard Augmented Lagrange Method (ALM) for solving
(10). Hence, the last term of (28) can be simply viewed as a
second-order correction term for the dual update. Meanwhile,
we also notice that the computation of (I−W)1/2 is not only
expensive but also destroys the network structure. To overcome

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

5

this undesirable computation, multiplying (28) by (I−W)1/2

and denoting v = (I−W)1/2λ, we obtain

vt+1 =vt + α(I−W)xt+1 (29)

+ (I−W)1/2
(
G̃t
)†

(I−W)1/2xt+1

=vt + α(I−W)xt+1 + (I−W)Dt(I−W)xt+1,

where

Dt =
(

(I−W)1/2
)† (

G̃t
)† (

(I−W)1/2
)†
.

However, in practice, for computation efficiency and numerical
stability, we would approximate Dt by P̃tD̃, where P̃t is
a block diagonal approximation of (G̃t + rtI)−1 and D̃ is
a block diagonal matrix whose i-th diagonal block D̃i =

1
1−W̃ii

Ip. Here rt > 0 is a scalar. Lemma II.2 implies that as
rt goes to zero, (I−W)1/2(G̃t+rtI)−1(I−W)1/2 approaches
(I −W)1/2(G̃t)†(I −W)1/2. Finally, by introducing a dual
stepsize γ > 0 for ensuring global convergence, based on (29),
we propose to update {λt} and {vt} in our new algorithm as

vt+1 = vt + γ(I−W)νt and λt+1 = λt + γ(I−W)1/2νt,
(30)

where νt = αxt+1 + P̃tD̃(I−W)xt+1.
We now explain our construction of P̃t by using BB [40]

and dynamic average consensus techniques to capture certain
curvature information of (G̃t + rtI)−1. First, by using again
Bt+1 to approximate ∇2f(xt+1), noticing vt − vt−1 = (I−
W)1/2(λt − λt−1) and (30), let us define

ζt−1 :=(I−W)1/2(Bt)−1(I−W)1/2(λt − λt−1)

=(I−W)1/2(Bt)−1(vt − vt−1)

=(I−W)1/2µt−1,

where µt−1 = (Bt)−1(vt − vt−1), and define

ξt−1 := λt − λt−1 = γ(I−W)1/2νt−1.

Then, the standard centralized BB technique suggests to ap-
proximate (G̃t + rtI)−1 by a scalar matrix ptI , where

pt =

(
(ζt−1)Tξt−1

(ξt−1)Tξt−1
+ rt

)−1

(31)

=

(
(vt − vt−1)Tµt−1

γ(vt − vt−1)Tνt−1
+ rt

)−1

=

(∑n
i=1 b̃

t
i∑n

i=1 ã
t
i

+ rt

)−1

with b̃ti = (vti − vt−1
i)Tµt−1

i and ãti = γ(vti − vt−1
i)Tνt−1

i =

γ(vti −vt−1
i)T

(
αxti + P̃t−1

i D̃i(x
t
i −
∑
j∈Ni W̃ijx

t
j)
)

. Obvi-
ously, the calculation of pt in (31) needs global information
from all nodes, which can not be realized in the decentralized
setting. On the other hand, we also notice that the scalar∑n
i=1 b̃

t
i/
∑n
i=1 ã

t
i in (31) is in fact the ratio of the average

values of ãti and b̃ti over n nodes. Motivated by the idea

of dynamic average consensus [41], we set P̃t to have the
following block scalar matrix format

P̃t =

 p̃t1Ip
...

p̃tnIp

 , (32)

where

p̃ti =


(

Proj[ω,ω]

(
bti
ati

)
+ rt

)−1

, if ati 6= 0;

(ω + rt)
−1
, if ati = 0 and bti > 0;

(ω + rt)
−1
, if ati = 0 and bti ≤ 0,

(33)
with ω > ω > 0 and the ratio 0

0 being defined as zero.
Here, ati and bti are certain estimations of 1

n

∑n
i=1 ã

t
i and

1
n

∑n
i=1 b̃

t
i, respectively, and can be calculated only by the

local information from neighboring nodes. More specifically,
in our algorithm ati and bti are calculated as follows:

ati =
∑
j∈Ni

W̃ija
t−1
j + ãti − ãt−1

i , a0
i = ã0

i = 1, (34)

bti =
∑
j∈Ni

W̃ijb
t−1
j + b̃ti − b̃t−1

i , b0i = b̃0i = 1. (35)

With the above calculation, we have the following lemma.

Lemma II.3. 1
n

∑n
i=1 a

t
i = 1

n

∑n
i=1 ã

t
i,

1
n

∑n
i=1 b

t
i =

1
n

∑n
i=1 b̃

t
i.

Proof: See Section VIII of the supplementary material.

Noticing vt = (I −W)1/2λt, the primal updates in (21)
can be also written as

xt+1 =xt − β
[
I− θα(Bt)−1(I−W)

]
(36)

× (Bt)−1∇xLα(xt,vt),

where

Lα(x,v) = f(x) + 〈v,x〉+
α

2
xT(I−W)x. (37)

Then, summarizing the above discussion, our decentralized
primal-dual method (DPDM) is given in Algorithm 1.

Remark 1.
• Algorithm 1 can be run parallelly on each node, which

only uses the local information from neighboring nodes.
The updates of Bt and P̃t exploit second-order infor-
mation and only involve matrix-vector products, which
would be computationally efficient.

• At most 2 + IR\{0}(θ) rounds of vector communications
are taken in both the primal and dual updates of DPDM,
which is comparable to or mildly higher than some
other primal-dual quasi-Newton methods (see Table I for
details). However, our numerical experiments show the
reduction in the total number of iterations and the CPU
time by applying quasi-Newton techniques in DPDM
would offset its slightly higher communication cost per
iteration.

• Algorithm 1 has the following relationships with some
existing well-known decentralized algorithms. Set the
parameters β = 1, γ = 1, and θ = 0 in Algorithm 1. If

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

6

Algorithm 1 DPDM
Input: x0, MaxIter, α, β, γ, θ, ω, ω, W, {rt}t≥0.

1: Set t = 0, T = MaxIter, v0 = 0, P̃0 = 1
1+r0 I, H

0 = I, a0
i = ã0

i = 1, b0i = b̃0i = 1, i = 1, . . . , n.
2: If t ≥ T , stop.
3: xt+1 = xt − β [I− θαHt(I−W)]Ht∇xLα(xt,vt).

4: Ht+1 =

 Ht+1
1

...
Ht+1
n

, where Ht+1
i = Ht

i −
Ht
iy
t
i(s

t
i)

T+sti(y
t
i)

THt
i

(sti)
Tyti

+
(

1 +
(yti)

THt
iy
t
i

(sti)
Tyti

)
sti(s

t
i)

T

(sti)
Tyti

,

sti = xt+1
i − xti and yti = ∇fi(xt+1

i)−∇fi(xti).

5: If t ≥ 1, P̃t =

 p̃t1Ip
...

p̃tnIp

, where p̃ti =


(

Proj[ω,ω]

(
bti
ati

)
+ rt

)−1

, if ati 6= 0;

(ω + rt)
−1
, if ati = 0 and bti > 0;

(ω + rt)
−1
, if ati = 0 and bti ≤ 0,

ati =
∑
j∈Ni

W̃ija
t−1
j + ãti − ãt−1

i , bti =
∑
j∈Ni

W̃ijb
t−1
j + b̃ti − b̃t−1

i ,

ãti = γ(vti − vt−1
i)T

(
αxti + P̃t−1

i D̃iu
t
i

)
, b̃ti = (vti − vt−1

i)THt
i(v

t
i − vt−1

i).

6: vt+1 = vt + γ(I−W)
(
αxt+1 + P̃tD̃ut+1

)
, where ut+1 = (I−W)xt+1.

7: Set t = t+ 1 and go to Step 2.
Output: xT .

Bt = ∇2f(xt) + εI, P̃t = 0, we obtain the algorithm
NT [29], while the algorithm ESOM [28] takes (Bt)−1

as truncated Taylor’s series expansion of the Hessian
inverse with P̃t = 0. On the other hand, if Bt = 2αI
and P̃t = 0, Algorithm 1 can be reduced as

xt+1 =(I + W)xt − I + W

2
xt−1 − 1

2α
∇f(xt)

+
1

2α
∇f(xt−1)

which is equivalent to EXTRA [10] with the stepsize
1/(2α).

• A single quasi-Newton primal steps is performed in Algo-
rithm 1. Allowing multiple primal updates per iteration
will yield a more accurate approximate solution xt+1 of
minimizing Lα(x,vt), which would also benefit the dual
update. By this consideration, a generalized decentralized
primal-dual method (GDPDM) is given as Algorithm 2,
where S ≥ 1 is the number of primal steps per iteration.

c) Quasi-Newton tracking: As Newton Tracking [29],
we show that DPDM also maintains a quasi-Newton tracking
property, implying that the updating direction of each xti is
a local quasi-Newton direction and will be a global quasi-
Newton direction when {xti}

n
i=1 are getting consensus.

First, by (36), we have

Btxt+1 −Btxt

=− β
[
∇f

(
xt
)

+ vt + α(I−W)xt
]

+ βθα(I−W)(Bt)−1
[
∇f

(
xt
)

+ vt + α(I−W)xt
]

=− β
[
∇f

(
xt
)

+ vt + α(I−W)xt
]

+ β(I−W)ht,

where

ht = θα(Bt)−1
[
∇f

(
xt
)

+ vt + α(I−W)xt
]
.

Hence, we have
xt+1 = xt − βdt, (38)

where dt = (Bt)−1gt and

gt = ∇f
(
xt
)

+ vt + (I−W)(αxt + ht). (39)

We now show the quasi-Newton tracking by (38), (39), and
(22). Firstly, Bt+1

i given by (23) is actually the solution of the
following optimization problem

Bt+1
i = arg min

Z
tr
[(
Bt
i

)−1
Z
]
− log det

[(
Bt
i

)−1
Z
]
,

s.t. Zsti = yti , Z � 0,

where sti = xt+1
i − xti, y

t
i = ∇fi(xt+1

i) − ∇fi(xti). Hence,
we have

Bt+1
i sti = yti . (40)

Summing (40) over i = 1, . . . , n, we obtain
n∑
i=1

Bt+1
i (xt+1

i − xti) =

n∑
i=1

(
∇fi(xt+1

i)−∇fi(xti)
)
. (41)

When {xti}
n
i=1 are consensus for large t, i.e., xti = x̄t for

all i = 1, . . . , n and large t, (41) implies
∑n
i=1 B

t+1
i will

satisfy the global quasi-Newton secant equation of the original
problem (1), i.e.,

n∑
i=1

Bt+1
i (x̄t+1 − x̄t) = ∇F (x̄t+1)−∇F (x̄t),

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 2 GDPDM
Input: x0, MaxIter1, MaxIter2, α, β, γ, θ, ω, ω, W, {rt}t≥0.

1: Set t = 0, T =MaxIter1, S =MaxIter2, v0 = 0, P̃0 = 1
1+r0 I, H

0 = I, a0
i = ã0

i = 1, b0i = b̃0i = 1, i = 1, . . . , n.
2: If t ≥ T , stop.
3: xt,0 = xt, Ht,0 = Ht.
4: For s = 0, 1, . . . , S − 1
5: xt,s+1 = xt,s − β [I− θαHt,s(I−W)]Ht,s∇xLα(xt,s,vt).

6: Ht,s+1 =

 Ht,s+1
1

...
Ht,s+1
n

, where

Ht+1,s
i = Ht,s

i −
Ht,s
i yt,si (st,si)T + st,si (yt,si)THt,s

i

(st,si)Tyt,si
+

(
1 +

(yt,si)THt,s
i yt,si

(st,si)Tyt,si

)
st,si (st,si)T

(st,si)Tyt,si
,

st,si = xt,s+1
i − xt,si and yt,si = ∇fi(xt,s+1

i)−∇fi(xt,si).

7: End for.
8: xt+1 = xt,S ,Ht+1 = Ht,S .

9: If t ≥ 1, P̃t =

 p̃t1Ip
...

p̃tnIp

, where p̃ti =


(

Proj[ω,ω]

(
bti
ati

)
+ rt

)−1

, if ati 6= 0;

(ω + rt)
−1
, if ati = 0 and bti > 0;

(ω + rt)
−1
, if ati = 0 and bti ≤ 0,

ati =
∑
j∈Ni

W̃ija
t−1
j + ãti − ãt−1

i , bti =
∑
j∈Ni

W̃ijb
t−1
j + b̃ti − b̃t−1

i ,

ãti = γ(vti − vt−1
i)T

(
αxti + P̃t−1

i D̃iu
t
i

)
, b̃ti = (vti − vt−1

i)THt
i(v

t
i − vt−1

i).

10: vt+1 = vt + γ(I−W)
(
αxt+1 + P̃tD̃ut+1

)
, where ut+1 = (I−W)xt+1.

11: Set t = t+ 1 and go to Step 2.
Output: xT .

where F (z) =
∑n
i=1 fi(z). On the other hand, by (39) and

(30), we have

Bt+1dt+1 −Btdt = gt+1 − gt (42)

=∇f
(
xt+1

)
−∇f

(
xt
)

+ vt+1 − vt

+ (I−W)
[
α(xt+1 − xt) + ht+1 − ht

]
=∇f

(
xt+1

)
−∇f

(
xt
)

+ (I−W)g̃t,

where g̃t = α(xt+1 − xt) + γνt + ht+1 − ht. The i-th block
of (42) can be written as

Bt+1
i dt+1

i −Bt
id
t
i (43)

=∇fi
(
xt+1
i

)
−∇fi

(
xti
)

+

g̃ti −
∑
j∈Ni

W̃ij g̃
t
j

 .

Summing (43) over i = 1, . . . , n and using W̃T1 = 1 yields

n∑
i=1

Bt+1
i dt+1

i =

n∑
i=1

Bt
id
t
i +

n∑
i=1

(
∇fi(xt+1

i)−∇fi(xti)
)
.

(44)
Since v0 = 0 in DPDM, we have from (39) that

n∑
i=1

B0
id

0
i =

n∑
i=1

g0
i =

n∑
i=1

∇fi
(
x0
i

)
.

So, summing (44) over t, we have
n∑
i=1

Bt
id
t
i =

n∑
i=1

∇fi
(
xti
)
. (45)

Then, when {xti}
n
i=1 are getting consensus for large t, we

have from dti = (xti − xt+1
i)/β that {dti}

n
i=1 are also getting

consensus for large t, which implies 1
n

∑n
i=1 d

t
i =: d̄t = dti

for all i = 1, . . . , n and large t. Hence, by (45), we have
n∑
i=1

Bt
id̄
t =

n∑
i=1

∇fi
(
x̄t
)
, (46)

which together with (41) shows d̄t is a a global quasi-Newton
direction of original problem (1).

III. CONVERGENCE ANALYSIS

In this section, we will analyze the global convergence of
Algorithm 2. Note that Algorithm 1 is a special case of
Algorithm 2 with S = 1. For convenience, let us denote
Z = I−W, ρ = λmax(Z), σ = λ2(Z) and

B̃t,s =
[
I− θα(Bt,s)−1Z

] (
Bt,s

)−1
.

Then, Algorithm 2 gives

xt,s+1 = xt,s − βB̃t,s∇xLα(xt,s,vt). (47)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

8

By Assumption 1, 2, we can easily get

µI � ∇xxLα(x,v) = ∇xxL̃α(x,λ) � LI, ∀x ∈ Rnp, (48)

where L = L+ ρα. We also make the following assumption.

Assumption 3. The approximate matrices {Bt,s} satisfy

ψI �
(
Bt,s

)−1 � ψ̄I,

for any t and s, where ψ̄ > ψ > 0. And the parameter θ is
chosen such that 0 ≤ θ < min{1, ψ/(αρ)}.

From Assumption 3, we can easily derive

ψI � B̃t,s � ΨI, where Ψ =
ψ̄ψ

ψ − θαρ
.

Let Pt = αI + (I −W)1/2P̃tD̃(I −W)1/2. From (33), we
can also derive

αI � Pt � ᾱI, where ᾱ = α+
ρ

ω(1−maxi{W̃ii})
.

In addition, by (30), we have

vt+1 = vt + γ(I−W)1/2Pt(I−W)1/2xt+1, (49)

and
λt+1 = λt + γPt(I−W)1/2xt+1. (50)

In the following, we define β1 and β2 be lower and upper
bounds of eigenvalues of βB̃t,s:

β1 = βψ and β2 = βΨ, (51)

and let γ1 and γ2 the lower and upper bounds to eigenvalues
of γPt:

γ1 = γα and γ2 = γᾱ. (52)

By Assumption 2 and Slater’s condition, which holds due
to linear constraints, strong duality holds for the problem (10).
Hence, a dual equivalent problem to the problem (10) as well
as the problem (3) is

max
λ∈Rnp

g(λ), (53)

where g(λ) = minx∈RnpL̃α(x,λ) is the dual function. In
addition, denoting f̃(·) := f(·) + (α/2)‖ · ‖Z, we have

g(λ) = min
x
{f(x) + λTZ1/2x + (α/2)xTZx} (54)

=− f̃∗(−Z1/2λ),

where f̃∗ is the conjugate function of f̃ . Note that f̃∗ is 1/L-
strongly convex. Let −v∗ be the unique minimizer of f̃∗ and
Λ∗ be the dual optimal solution set of (53). Then, it follows
from (54) that

Λ∗ = {λ∗ : Z1/2λ = v∗}

and for any λ∗ ∈ Λ∗, we have

g(λ∗) = −f̃∗(−Z1/2λ∗) = −f̃∗(−v∗).

Furthermore, by (53) and the definition of x∗(λ) in (11), we
have g(λ) = L̃α(x∗(λ),λ),

∇g(λ) = Z1/2x∗(λ), (55)

and x∗(λ∗) = x∗ by the strong duality. The following lemma
reveals some important properties of the function g(·).

Lemma III.1. Under Assumptions 1, 2 and 3, the dual
function g(·) is Lg-Lipschitz smooth and for any λ∗ ∈ Λ∗,
the PL inequality holds

g (λ∗)− g(λt) ≤ 1

2µg
‖∇g(λt)‖2

for all t ≥ 0, where µg = σ/L and Lg = ρ/µ.

Proof: See Section IX of the supplementary material.
To establish a key recursive relation in our convergence

analysis, we define the following quantities:

∆t
λ = g (λ∗)− g

(
λt
)
,

∆t
x = L̃α

(
xt,λt

)
− L̃α

(
x∗
(
λt
)
,λt
)

and

∆t,s
x = L̃α

(
xt,s,λt

)
− L̃α

(
x∗(λt),λt

)
,

for s = 0, 1, . . . , S − 1,

where λ∗ can be an optimal dual solution in Λ∗ and ∆t
λ is the

dual optimality gap. We define a potential function by combing
the performance metrics ∆t

λ and ∆t
x as

∆t = 7∆t
λ + ∆t

x. (56)

The following theorem provides the linear decay rate of ∆t

under proper choice of primal and dual step sizes.

Theorem III.2. Under Assumptions 1, 2, and 3, if the primal
and dual step sizes, namely β and γ, satisfy β ≤ 1

ΨL and

γ < min

{
1

6ᾱLg
,

(
1

(1− βψµ)S
− 1

)
µ2

11ᾱLρ

}
,

there exists a constant κ ∈ (0, 1) such that

∆t+1 ≤ κ∆t,

where

κ = max

{
1− 2

7
(1− 6Lgγᾱ)µgγα, (57)

(
1 +

(12Lgγᾱ+ 10)Lργᾱ
µ2

)
(1− βψµ)S

}
.

Especially, when S = 1, if β ≤ 1
2ΨL and γ ≤

min
{

1
12ᾱLg

, 4µ2

99ᾱLρ

}
, there exists a constant q ∈ (0, 1) such

that
∆t+1 ≤ (1− q)∆t,

where q = min
{
γ1µg

7 , βψµ2

}
.

Proof: See Section X of the supplementary material.
By Theorem III.2, we can directly establish that xt con-

verges to the unique minimizer x∗ = x∗(λ∗) of the original
problem (10) at a linear rate.

Corollary III.3. Under Assumptions 1, 2, and 3, if the primal
and dual step sizes, namely β and γ, satisfy β ≤ 1

ΨL and

γ < min

{
1

6ᾱLg
,

(
1

(1− βψµ)S
− 1

)
µ2

11ᾱLρ

}
,

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

9

the iterates {xt} generated by Algorithm 2 converge to
x∗(λ∗) linearly, more specifically, there exists a constant
κ ∈ (0, 1) such that∥∥xt − x∗(λ∗)

∥∥2 ≤ cκt,

where c = 4∆0/
(
µmin

{
7µ
L , 1

})
and 0 < κ < 1 is defined

in (57). Especially, when S = 1, if β ≤ 1
2ΨL and γ ≤

min
{

1
12ᾱLg

, 4µ2

99ᾱLρ

}
, we have ‖xt − x∗(λ∗)‖2 ≤ c(1 − q)t,

where q = min
{
γ1µg

7 , βψµ2

}
.

Proof: See Section XI of the supplementary material.

Remark 2. The condition numbers of the objective function
and augmented Lagrangian function are defined as

κf :=
L

µ
and κl :=

L
µ
.

The condition number of the network can be defined as

κg :=
λmax(I− W̃)

λ2(I− W̃)
=
ρ

σ
,

which measures the network topology and is an important
factor affecting the performance of decentralized methods. In
general, a smaller condition number means greater connec-
tivity of the network. From Corollary III.3, we can derive the
iteration complexity of our DPDM as

O
(
κ2
l κglog

(
1

ε

))
.

When S is sufficiently large, the iteration complexity of
GDPDM can reduce to O

(
κlκglog

(
1
ε

))
.

Our methods do not have a faster-than-linear rate since the
dual Hessian is approximated by the BB technique. It is well-
known that the BB method only has a linear convergence rate
for minimizing strongly convex problems, which is the same as
the steepest descent (SD) method. However, this does not limit
the practical much superior performance of the BB method
over the SD method. In our experiments, our methods are
directly compared with the primal-dual methods using other
dual ascent step sizes, such as NT and ESOM.

Note that existing decentralized second-order and quasi-
Newton methods exhibit different performance across several
aspects, including primal-dual updates, convergence rates,
computational costs, etc.. Here we compare our method with
other major decentralized second-order and quasi-Newton
methods. The comparisons are summarized in Table I.

IV. NUMERICAL EXPERIMENTS

In this section, we would like to test and compare our
developed algorithms with some well-developed first-order
and second-order algorithms on solving the linear regression
problems and the logistic regression problems over a con-
nected undirected network with edge density d ∈ (0, 1]. An
additional experiment about the effect of network topology is
presented in Section XII of the supplementary material. For the

generated network, we choose the Metropolis constant edge
weight matrix [36] as the mixing matrix, that is

W̃ij =


1

max{deg(i),deg(j)}+1 , if (i, j) ∈ E ;

0, if (i, j) /∈ E and i 6= j;

1−
∑
k∈Ni\{i} W̃ik, if i = j,

where (i, j) ∈ E indicates there is an edge between node i
and node j, and deg(i) means the degree of node i.

Based on our analysis, we also propose an algorithm
GDPDM+, which applies an adaptive stop criteria for the
inner loop as stated in Algorithm 3, while the remaining steps
are the same as those of GDPDM. In fact, it is not difficult
to see the global convergence of GDPDM+ can be also ob-
tained within the convergence analysis framework of GDPDM.
Our comparison algorithms in this section include GT [15],
EXTRA [10], ESOM-1 [27] (called ESOM below), NT [29],
DBFGS [26], Damped regularized limited-memory DFP [33]
(called DR-LM-DFP below), Damped limited-memory BFGS
[33] (called D-LM-BFGS below), and DQN [34].

Algorithm 3 Inner loop of GDPDM+ with respect to node i

1: xt,0i = xti, H
t,0
i = Ht

i, block(i) = 1.
2: For s = 0, . . . , S − 1
3: If block(i) == 1
4: Update xt,s+1

i by (36).
5: Update Ht,s+1

i by (24).
6: Else
7: xt,s+1

i = xt,si , and Ht,s+1
i = Ht,s

i .
8: End if.
9: If ‖xt,s+1

i − xti‖ ≤ c‖vti − vt−1
i ‖(0 < c < 1)

10: block(i) = 0.
11: End if.
12: End for.

We use GDPDM(K) and GDPDM(K)+to denote GDPDM
and GDPDM+ with S = K, respectively. In addition, we
update rt in (33) as rt = cr(ηr)

t, where cr > 0 and 0 < ηr <
1, and set ω >> ω > 0 to be a large and a small positive
constant, respectively. Recall that p̃ti is an approximation of
pt, which can be rewritten as

pt =

(
‖λt − λt−1‖2

B̂t+1

‖λt − λt−1‖2
+ rt

)−1

,

where B̂t+1 = (I−W)1/2(Bt+1)−1(I−W)1/2. By As-
sumptions 3, we have 1

ρψ̄+rt
≤ pt ≤ 1

σψ+rt . If p̃ti tends
to pt, we would have p̃ti ∈ [1

ρψ̄+rt
, 1
σψ+rt] ⊂ [1

ω+rt ,
1

ω+rt].
The success of each algorithm is measured by

Relative error :=
1

n

n∑
i=1

‖xti − z∗‖
‖z∗‖+ 1

,

where the true solution z∗ is explicitly obtained for the linear
regression problem and is pre-computed by a centralized algo-
rithm for the logistic regression problem. In our experiments,
we would analyze the impact of networks with different con-
dition numbers. So we further introduce the communication

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

10

Table I
COMPARISONS OF DECENTRALIZED SECOND-ORDER AND QUASI-NEWTON METHODS

Primal order Dual order
Convergence

rate Iteration complexity Assumption3 Calculate
Hessian or not

Communication
overhead4

NT5[29] Second First Linear
O(max{κf

√
κg + κ2

f ,

κ3/2
g /κf + κf

√
κg}log(1

ε))
SC+LG+LH Yes p

ESOM-K [27] Second First Linear O
(
κ2
f/σlog

(
1
ε

))
SC+LG+LH Yes (1 +K)p

DBFGS [26] Quasi second1 \ Inexactly linear2 \ SC+LG No 3p
DQN [34] Quasi second \ asymptotic \ C+LG No 3p

DR-LM-DFP [33] Quasi second \ Linear O
(
κ2
fκ

2
glog

(
1
ε

))
SC+LG No 2p

D-LM-BFGS [33] Quasi second \ Linear O
(
κ2
fκ

2
glog

(
1
ε

))
SC+LG No 2p

PD-QN-K [28] Quasi second Quasi second \ \ SC+LG No (4 +K)p
DPDM Quasi second Quasi second Linear O

(
κ2
l κglog

(
1
ε

))
SC+LG No (2 + IR\{0}(θ))p+ 2?

1 “Quasi second” means the second-order information is captured by Hessian approximations using gradient information.
2 “Inexactly linear” means that the method only converges linearly to a small neighborhood of the solution.
3 “C”, “SC”, “LG”, “LH” respectively mean “Convexity”, “Strong convexity”, “Lipschitz continuous gradient”, “Lipschitz continuous Hessian”.
4 For the fixed underlying network, communication overhead can be defined as rounds of communication per iteration × dimensions of transmitted scalars, vectors, or matrices.
5 The iteration complexity of NT is computed when xt is close to x∗. So the global iteration complexity is larger than the value given above.
? Here, the addition of 2 is because of the additional 2 scalar communications of atj and btj in each iteration of DPDM.

volume which can be calculated as follows:

Communication volume
= number of iterations
× number of communication rounds per iteration
× number of edges, i.e., dn(n− 1)/2

× dimension of transmitted vectors on each edge.

In all experiments, we set the number of nodes n = 10. For all
comparison algorithms, we initialize x0 = 0 and set v0 = 0
for our algorithms. All experiments are coded in MATLAB
R2017b and run on a laptop with Intel Core i5-9300H CPU,
16GB RAM, and Windows 10 operating system.

A. Linear Regression Problem

In this subsection, we investigate the impacts of the con-
dition number of the objective function, denoted as κf , by
comparing our algorithms with first-order algorithms, EXTRA
[10] and GT [15]. We consider the following optimization
problem

min
z∈Rp

n∑
i=1

1

2
zTAiz + bT

i z, (58)

where Ai ∈ Rp×p and bi ∈ Rp are private data available to
node i. To control the condition number of problem (58), we
construct Ai = QT diag{a1, ..., ap}Q, where Q is a random
orthogonal matrix. We set a1 = 1 and ap as an arbitrarily
large number, and generate aj ∼ U(1, 2) for j = 2, . . . , p−1,
where U(1, 2) represents the uniform distribution from 1 to 2.
So κf = ap/a1 = ap.

We set p = 1000 and edge density d = 0.36 for the network,
where κg = 9.8. We set ap = 10, 102, 103, 104. All the
algorithm parameters are set for their better performance and
are listed in Table II where parameter notations follow the
source papers.

From figure 1, We find that for such simple quadratic
problems, GDPDM(1), namely DPDM is most efficient since
the outer iteration number has no significant change but the
communication cost increases as the number of inner iterations

Table II
PARAMETER SETTINGS FOR LINEAR REGRESSION

GT EXTRA
GDPDM(1) (GDPDM(2);
GDPDM(3); GDPDM(4);

GDPDM(4)+)
κf = 10 \ \ β = 0.49(0.31; 0.22; 0.17;

0.57), θ = 0.32, α = 2.8,

γ = 1, rt = 0.95t, c = 0.4

κf = 102 η = 5× 10−3 α = 10−2

κf = 103 η = 5× 10−4 α = 10−3

κf = 104 η = 5× 10−5 α = 10−4

50 100 150 200
Number of iterations

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GDPDM(1)
GDPDM(2)
GDPDM(3)
GDPDM(4)

GDPDM(4)+

(a)

0 0.5 1 1.5 2
Communication volume 107

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

GDPDM(1)
GDPDM(2)
GDPDM(3)
GDPDM(4)

GDPDM(4)+

(b)
Figure 1. Comparisons among GDPDMs in terms of the iteration number
and communication volume for κf = 10.

increases. In this case, one BFGS iteration is sufficient to
minimize the quadratic primal problem.

Figure 2 shows that our algorithm is more robust to the
problem condition number than EXTRA and GT. The conver-
gence rate of first-order algorithms becomes obviously slow
when the condition number increases.

B. Logistic Regression Problem

In this subsection, we firstly compare our algorithms with
GT [15] and two second-order algorithms: ESOM [27] and
NT [29], which use Hessian in the primal domain with dual
ascent in the dual domain. We consider the logistic regression

min
z∈Rp

n∑
i=1

ni∑
j=1

log
(
1 + exp(−bijaTijz)

)
+
λ̂

2
‖z‖2, (59)

where aij ∈ Rp are the feature vectors and bij ∈ {−1,+1}
are the labels. The experiments are conducted on four datasets

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

11

50 100 150 200
Number of iterations

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

EXTRA
f
=102

EXTRA
f
=103

EXTRA
f
=104

GT
f
=102

GT
f
=103

GT
f
=104

DPDM
f
=102

DPDM
f
=103

DPDM
f
=104

(a)

0 0.5 1 1.5 2
Communication volume 107

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

EXTRA
f
=102

EXTRA
f
=103

EXTRA
f
=104

GT
f
=102

GT
f
=103

GT
f
=104

DPDM
f
=102

DPDM
f
=103

DPDM
f
=104

(b)

0 10 20 30 40
Time(s)

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

EXTRA
f
=102

EXTRA
f
=103

EXTRA
f
=104

GT
f
=102

GT
f
=103

GT
f
=104

DPDM
f
=102

DPDM
f
=103

DPDM
f
=104

(c)
Figure 2. Comparisons with decentralized first-order algorithms in terms of the iteration number, communication volume, and CPU time (in seconds).

from the LIBSVM library: mushroom, ijcnn1, w8a, and a9a.
The edge density d = 0.36 and the regularization parameter
λ̂ = 1. All the algorithm parameters are set for their better
performance and are listed in Table III where parameter
notations follow the source papers.

Figures 3, 4, 5, and 6 show that our algorithms converge
significantly faster than GT, ESOM, and NT in terms of
both the iteration number and CPU time. As more primal
updates are allowed in each inner iteration of GDPDMs, the
(outer) iteration number is reduced while the CPU time is
often increased. However, it can be seen that GDPDM(4)+,
which adaptively controls the number of inner iterations for
solving the more complex and nonlinear logistic regression
problem, performs generally best and keeps a good balance
between the iteration number and CPU time. We can see that
the performance of GDPDM(4)+ is close to GDPDM(4) in
terms of the number of iterations and has about the same low
communication and time cost as GDPDM(1).

On the other hand, since multiple primal updates in each
iteration would lead to more communication cost, GDPDMs
do not outperform the second-order method NT in terms of
communication volume. For saving communication in NT, the
topology-dependent term α(I−W) is removed when involving
matrix inverse calculation as shown in (20). This renders NT
needing a big regularization parameter ε to compensate for
the loss of network topology information. And ε is required
to be bounded below for convergence of NT, which could
also affect the fast local convergence. Most GDPDMs are
more communication-efficient than the second-order method
ESOM, while all GDPDMs are superior to the first-order
method GT. Moreover, ESOM and NT obviously perform
significantly worse in terms of CPU time, since exact Hessian
and matrix inversions are calculated in their iterations. Figures
3d, 4d, 5d and 6d show the needed time and communication
volume for reaching a 10−10-accuracy solution. We think it
may not be an ideal way to trade much time efficiency for
a slight improvement in communication. Our GDPDMs, such
as GDPDM(1), GDPDM(4)+ are located near the bottom left
corner, implying they are quite efficient in both communication
cost and CPU time.

We now compare our algorithms with several well-
developed decentralized quasi-Newton algorithms: DBFGS
[26], DR-LM-DFP [33], D-LM-BFGS [33], and DQN [34]. All
the algorithm parameters are set for their better performance
and are listed in Table IV where parameter notations follow

the source papers.
From figures 7 and 8, we see that our algorithm is more

efficient than other algorithms. The reason why DR-LM-DFP
and D-LM-BFGS are very slow is that their quasi-Newton
matrices are constructed using some significant regulariza-
tion or damping techniques which could badly affect the
approximation to the Hessian for capturing the second-order
information. DQN has a similar recursion to DR-LM-DFP, yet
it introduces an additional communication step updating the
search direction and allows for uncoordinated (different) step
sizes among the nodes. While it accelerates convergence in
terms of iteration count, it also increases the communication
burden. Furthermore, DBFGS is an inexact method which only
converges to a small neighborhood of the solution.

To sum up, numerical experiments show our new GDPDMs
perform better than currently well-developed decentralized
methods due to the applications of quasi-Newton techniques to
reduce the computational cost and the explorations of second-
order information in both primal and dual updates to accelerate
the convergence.

V. CONCLUSIONS

This paper considers a decentralized consensus optimization
problem and proposes a decentralized primal-dual method
(DPDM) and its generalization (GDPDM) with multiple pri-
mal updates per iteration. Both primal and dual updates
effectively explore second-order information, where Hessian
approximations are constructed with at most matrix-vector
products. The single Jacobi loop with block-wise BFGS ap-
proximation is conducted in the primal domain. Based on
a new approximate dual gradient variation, the dual ascent
step with a novel second-order correction is implemented in
the dual domain. We show the updating direction of each
node asymptotically tends towards the global quasi-Newton
direction. The relationship between GDPDM and some first
or second-order methods is also established. Under proper
assumptions, GDPDMs have globally linear convergence. The
numerical results indicate that GDPDMs are not only very
robust on the condition number of the problem, but also
perform significantly better in terms of iteration number and
CPU time than all the comparison decentralized methods,
including EXTRA, GT, ESOM, NT, DBFGS, DR-LM-DFP,
D-LM-BFGS, and DQN.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

12

Table III
PARAMETER SETTINGS FOR LOGISTIC REGRESSION WITH DECENTRALIZED FIRST-ORDER AND SECOND-ORDER ALGORITHMS AND OUR GDPDMS

GT ESOM NT GDPDM(1) (GDPDM(2); GDPDM(4); GDPDM(4)+)

mushroom
of samples (

∑n
i=1 ni = 8120)

of features (p = 112)
η = 0.08 ε = 0.3, α = 3.9 ε = 3.1, α = 3.9

β = 0.48(0.3; 0.17; 0.51), θ = 0.18, γ = 1,
α = 3.6, rt = 0.95t, c = 0.6

ijcnn1
of samples (

∑n
i=1 ni = 49990)

of features (p = 22)
η = 0.06 ε = 0.1, α = 3.9 ε = 3.5, α = 3.9

β = 0.41(0.33; 0.22; 0.44), θ = 0.15, γ = 1,
α = 4, rt = 0.95t, c = 0.3

w8a
of samples (

∑n
i=1 ni = 49740)

of features (p = 300)
η = 0.06 ε = 0.2, α = 4.1 ε = 3.4, α = 4.0

β = 0.47(0.38; 0.22; 0.45), γ = 1, α = 3.6,
θ = 0.17(0.17; 0.17; 0.16), rt = 0.95t, c = 0.6

a9a
of samples (

∑n
i=1 ni = 32560)

of features (p = 123)
η = 0.06 ε = 0.1, α = 3.9 ε = 3.3, α = 3.9

β = 0.38(0.34; 0.19; 0.42), θ = 0.15, γ = 1,
α = 4.0, rt = 0.95t, c = 0.45

20 40 60 80 100
Number of iterations

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(a)

0 1 2 3 4 5 6
Communication volume 105

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(b)

0 0.2 0.4 0.6 0.8 1 1.2
Time(s)

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(c)

106

Communication volume

100

101

T
im

e(
s)

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(d)
Figure 3. (a-c) Comparisons with decentralized second-order algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using mushroom dataset. (d) Balance between time and communication volume.

20 40 60 80 100
Number of iterations

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(a)

0 2 4 6 8 10 12 14
Communication volume 104

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(b)

0 0.5 1 1.5 2 2.5 3
Time(s)

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(c)

105 106

Communication volume

100

101

102

T
im

e(
s)

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(d)
Figure 4. (a-c) Comparisons with decentralized second-order algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using ijcnn1 dataset. (d) Balance between time and communication volume.

10 20 30 40 50 60 70
Number of iterations

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(a)

0 2 4 6 8 10
Communication volume 105

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(b)

0 0.5 1 1.5 2 2.5 3
Time(s)

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(c)

1 2 3 4 5 6 7 8
Communication volume 106

100

101

102

T
im

e(
s)

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(d)
Figure 5. (a-c) Comparisons with decentralized second-order algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using w8a dataset. (d) Balance between time and communication volume.

REFERENCES

[1] G. Fusco and M. Russo, “A decentralized approach for voltage control
by multiple distributed energy resources,” IEEE Transactions on Smart

Grid, vol. 12, no. 4, pp. 3115–3127, 2021.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

13

20 40 60 80 100
Number of iterations

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(a)

0 1 2 3 4 5 6 7
Communication volume 105

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(b)

0 0.5 1 1.5 2 2.5 3
Time(s)

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(c)

0.5 1 1.5 2 2.5 3
Communication volume 106

100

101

T
im

e(
s)

GT
ESOM
NT
GDPDM(1)
GDPDM(2)
GDPDM(4)

GDPDM(4)+

(d)
Figure 6. (a-c) Comparisons with decentralized second-order algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using a9a dataset. (d) Balance between time and communication volume.

Table IV
PARAMETER SETTINGS FOR LOGISTIC REGRESSION WITH DECENTRALIZED QUASI-NEWTON ALGORITHMS

DBFGS DR-LM-DFP D-LM-BFGS DQN

ijcnn1
α = 0.01, ε = 0.02,
γ = 0.1, Γ = 0.1

α = 0.07, ρ = 0.04, ε = 10−3,
β = 1, B = 104, L̃ = 1, M = 10

α = 0.48, ε = 10−3, β = 10−3,
B = 104, L̃ = 20, M = 8

αt
i = 0.11ζti

*, γ = 1

a9a
α = 0.01, ε = 0.03,
γ = 0.25, Γ = 0.05

α = 0.07, ρ = 0.03, ε = 5× 10−3,
β = 10−2, B = 104, L̃ = 1, M = 8

α = 0.45, ε = 10−3, β = 10−3,
B = 104, L̃ = 10, M = 3

αt
i = 0.11ζti , γ = 3

* ζti is the random variable generated over node i at iteration t and satisfies the uniform distribution over interval (0.5, 1.5).

20 40 60 80 100 120 140
Number of iterations

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(a)

0 0.5 1 1.5 2 2.5
Communication volume 105

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(b)

0 0.5 1 1.5 2 2.5
Time(s)

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(c)
Figure 7. Comparisons with decentralized quasi-Newton algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using ijcnn1 dataset.

20 40 60 80 100 120 140
Number of iterations

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(a)

0 2 4 6 8 10 12
Communication volume 105

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(b)

0 0.5 1 1.5 2 2.5
Time(s)

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

DBFGS
D-LM-BFGS
DR-LM-DFP
DQN

GDPDM(4)+

(c)
Figure 8. Comparisons with decentralized quasi-Newton algorithms in terms of the iteration number, communication volume, and CPU time (in seconds)
using a9a dataset.

[2] E. Jeong, M. Zecchin, and M. Kountouris, “Asynchronous decentral-
ized learning over unreliable wireless networks,” in 2022 International
Conference on Communications (ICC), 2022, pp. 607–612.

[3] X. Zhang, C. Hu, B. He, and Z. Han, “Distributed reptile algorithm for
meta-learning over multi-agent systems,” IEEE Transactions on Signal
Processing, vol. 70, pp. 5443–5456, 2022.

[4] Z. Chen, Z. Li, C. Guo, J. Wang, and Y. Ding, “Fully distributed robust
reserve scheduling for coupled transmission and distribution systems,”
IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 169–182, 2020.

[5] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for

federated learning,” IEEE Transactions on Signal Processing, vol. 70,
pp. 1142–1154, 2022.

[6] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[7] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[8] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,”
IEEE Transactions on Signal Processing, vol. 66, no. 11, pp. 2834–

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

14

2848, 2018.
[9] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing

communication and computation in distributed optimization,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3141–3155, 2018.

[10] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[11] H. Li and Z. Lin, “Revisiting extra for smooth distributed optimization,”
SIAM Journal on Optimization, vol. 30, no. 3, pp. 1795–1821, 2020.

[12] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Transactions on Signal Processing, vol. 67, no. 17, pp. 4494–4506,
2019.

[13] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning—part i: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[14] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in 2015 IEEE Conference on Decision and Control (CDC),
2015, pp. 2055–2060.

[15] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2017.

[16] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM Journal on
Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[17] J. Zhang, K. You, and K. Cai, “Distributed dual gradient tracking for
resource allocation in unbalanced networks,” IEEE Transactions on
Signal Processing, vol. 68, pp. 2186–2198, 2020.

[18] Z. Song, L. Shi, S. Pu, and M. Yan, “Optimal gradient tracking
for decentralized optimization,” Mathematical Programming, pp. 1–53,
2023.

[19] D. Jakovetić, “A unification and generalization of exact distributed
first-order methods,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 5, no. 1, pp. 31–46, 2018.

[20] F. Mansoori and E. Wei, “Flexpd: A flexible framework of first-order
primal-dual algorithms for distributed optimization,” IEEE Transactions
on Signal Processing, vol. 69, pp. 3500–3512, 2021.

[21] S. Zhu, M. Hong, and B. Chen, “Quantized consensus admm for multi-
agent distributed optimization,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4134–4138.

[22] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving
decentralized optimization,” IEEE Transactions on Information Foren-
sics and Security, vol. 14, no. 3, pp. 565–580, 2018.

[23] G. Mancino-Ball, Y. Xu, and J. Chen, “A decentralized primal-dual
framework for non-convex smooth consensus optimization,” IEEE
Transactions on Signal Processing, vol. 71, pp. 525–538, 2023.

[24] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2016.

[25] D. Bajovic, D. Jakovetic, N. Krejic, and N. K. Jerinkic, “Newton-like
method with diagonal correction for distributed optimization,” SIAM
Journal on Optimization, vol. 27, no. 2, pp. 1171–1203, 2017.

[26] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-newton
methods,” IEEE Transactions on Signal Processing, vol. 65, no. 10, pp.
2613–2628, 2017.

[27] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for consensus
optimization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 4, pp. 507–522, 2016.

[28] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-newton
method for exact consensus optimization,” IEEE Transactions on Signal
Processing, vol. 67, no. 23, pp. 5983–5997, 2019.

[29] J. Zhang, Q. Ling, and A. M.-C. So, “A newton tracking algorithm
with exact linear convergence for decentralized consensus optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 346–358, 2021.

[30] Y. Li, P. G. Voulgaris, and N. M. Freris, “A communication efficient
quasi-newton method for large-scale distributed multi-agent optimiza-
tion,” in 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 4268–4272.

[31] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Dqm: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–5173,
2016.

[32] Z. Zhang, S. Yang, and W. Xu, “Decentralized admm with compressed
and event-triggered communication,” Neural Networks, 2023.

[33] J. Zhang, H. Liu, A. M.-C. So, and Q. Ling, “Variance-reduced stochastic
quasi-newton methods for decentralized learning,” IEEE Transactions on
Signal Processing, vol. 71, pp. 311–326, 2023.

[34] O. Shorinwa and M. Schwager, “Distributed quasi-newton method for
multi-agent optimization,” IEEE Transactions on Signal Processing,
vol. 72, pp. 3535–3546, 2024.

[35] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Library in Signal Processing, 2014, vol. 3, pp. 323–453.

[36] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of parallel and distributed
computing, vol. 67, no. 1, pp. 33–46, 2007.

[37] S. U. Pillai, T. Suel, and S. Cha, “The perron-frobenius theorem: some
of its applications,” IEEE Signal Processing Magazine, vol. 22, no. 2,
pp. 62–75, 2005.

[38] D. M. Young, Iterative solution of large linear systems. Elsevier, 2014.
[39] Y. Yuan, “Analysis on a superlinearly convergent augmented lagrangian

method,” Acta Mathematica Sinica, English Series, vol. 30, no. 1, pp.
1–10, 2014.

[40] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA journal of numerical analysis, vol. 8, no. 1, pp. 141–148, 1988.

[41] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3547787

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on March 07,2025 at 18:09:16 UTC from IEEE Xplore. Restrictions apply.

