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Client Selection for Wireless Federated Learning
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Abstract—Federated learning is a distributed machine learning
paradigm that allows multiple edge devices to collaboratively
train a shared model without exchanging raw data. However, the
training efficiency of federated learning is highly dependent on
client selection. Moreover, due to the varying wireless commu-
nication environments and various computation latencies among
the clients, selecting clients randomly or uniformly may not be
optimal for balancing the data diversity and training efficiency.
In this article, we formulate a new latency-minimization problem
that simultaneously optimizes client selection and training proce-
dures in federated learning, which takes into account the data and
latency heterogeneity among the clients. Given the nonconvexity
of the problem, we derive a new convergence upper bound for
federated learning with probabilistic client selection. To solve
the mixed integer nonlinear programming problem, we introduce
a hybrid solution that integrates grid search techniques with
the polyhedral active set algorithm. Numerical analyses and
experiments on real-world data demonstrate that our scheme
outperforms the existing ones in terms of overall training latency
and achieves up to three times acceleration over random client
selection, especially in scenarios with highly heterogeneous data
and latencies among the clients.

Index Terms—Client selection, data heterogeneity, federated
learning, latency heterogeneity, optimization.

I. INTRODUCTION

THE UBIQUITOUS presence of edge devices, such as
mobile phones and Internet of Things (IoT) sensors, is

introducing new paradigms for collaborative machine learn-
ing, among which federated learning is gaining significant
attention. This approach is particularly appealing in the edge
networks because of its ability to facilitate decentralized
learning over the edge devices while helping preserve the data
privacy of these devices.
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In a typical federated learning setup, selected devices train
models on their local data and share model updates with
a central server that aggregates these updates to improve a
global model. However, environments, such as IoT and edge
networks are characterized by significant data and latency
heterogeneity among the devices. Therefore, the efficiency
of the training process in federated learning faces several
challenges [1], such as high communication costs between the
clients and the server, data heterogeneity among the clients [2],
and substantial differences in the response times of clients as
shown in Fig. 1.

The overall training time of federated learning is deter-
mined by two factors: 1) the number of global rounds
required for model convergence and 2) the time cost for
each training round. To reduce the overall training time
of federated learning, recent studies have explored various
strategies, including model compression [3], [4], [5], [6],
[7], [8], [9], model convergence acceleration [10], [11], [12],
and judicious participant selection [13], [14], [15]. Given the
server’s limited communication resources and the imperative
of maintaining efficient training, only a subset of clients are
selected to participate in each round of training. Hence, the
client selection strategies hold a critical role in determining
both the performance of the model and the efficiency of the
training process. On the one hand, the diversity and quality of
the data of selected clients are crucial to the generalizability
of the global model. On the other hand, the various training
latencies of the clients should be taken into account to improve
the training efficiency of the federated learning system.

Given the data heterogeneity among the clients, a straight-
forward strategy to facilitate faster model convergence is to
prioritize participants who have high-quality data and can
substantially influence model training. Existing studies have
widely adopted importance sampling techniques, in which
participant selection dynamically evolves based on the defined
criteria throughout the training process [16], [17], [18], [19],
[20], [21]. Data-based criteria and model-based criteria are
two major categories that determine the importance of clients.
Data-based criteria leverage the intrinsic properties of the local
data sets, considering elements, such as the volume of data
samples and the divergence in gradients or losses across data
sets [16], [17], [18], [22]. Instead, the model-based criteria
prioritize clients with high model divergence from the global
model [19], high angle divergence from the global model [20],
or high magnitude of the local model [21].

While importance sampling methods have indeed facilitated
enhancements in both performance and training efficiency
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Fig. 1. Data and latency heterogeneity in federated learning. Clients
exhibit diverse data qualities and experience various latencies. In each round,
participants are selected according to the probability {pi}. δt

i denotes the
latency of the ith client in the tth round.

in comparison with random client selection [18], they have
some intrinsic constraints and pose serious challenges because
most of the importance sampling methods are heuristic, the
effectiveness of sampling designs can only be evaluated
by empirical experiments. It is challenging to provide the
performance guarantee for these algorithms with respect to
the convergence rate and model accuracy [23]. Moreover,
manually defined criteria make it harder to strike the tradeoff
between exploitation, which focuses on selecting important
clients, and exploration, which aims to involve a diverse
range of clients. Another issue is the latency heterogeneity;
clients with valuable data might exhibit slow training times,
potentially extending the overall training time. To alleviate
this, some strategies establish deadlines for the model sub-
missions, such as enforcing a cut-off [24], instituting a soft
deadline [18], and applying a dynamic deadline [25]. Other
strategies schedule the model transmission of participants in
consideration of latency heterogeneity, such as round Robin
scheduling [26], latency clustering [27], and multiarmed bandit
scheduling [28].

In contrast to potentially biased importance sampling meth-
ods, probabilistic client selection strategies have demonstrated
stronger convergence guarantees and remain unbiased in
comparison with full participation methods [12], [29]. The
foundational studies, including the federated optimization [30]
and the federated averaging algorithm (FedAvg) [31], have
presented an uniform selection scheme, where a subset of
clients are randomly selected in each round of training.
However, this typically exhibits a suboptimal convergence
rate [10]. To improve FedAvg, extra prior knowledge has been
used in determining client selection probabilities, taking into
account factors like data volume [10], employing clustered
sampling [32], [33], and analysing the norms of the clients’
model parameters [15]. However, most of these efforts neglect
the impact of latency heterogeneity on the probability of
client selection. A notable exception is a recent study that
proposes an adaptive client sampling algorithm, which factors
in both the data and system heterogeneity to address latency

issues [29]. However, this method is based on the convergence
analysis suited for strongly convex situations, which does not
fully align with the nonconvex characteristics commonly found
in real-world federated learning applications.

To address the limitations of existing client selection meth-
ods, we formulate a nonlinear optimization problem with the
aim of reducing overall training time. This produces an optimal
probabilistic client selection scheme grounded in nonconvex
convergence analysis that accounts for both the data and
latency heterogeneity among clients. The main contributions
of our article are as follows.

1) We formulate a new latency-minimization problem that
simultaneously optimizes client selection and training
procedures in federated learning. This optimization
problem consists of key variables, such as the participant
selection probability, the number of global rounds, and
the number of participants. Our problem formulation
incorporates both the system and data diversity to
ensure its comprehensiveness. Furthermore, we study an
unbiased participant selection scheme, guaranteeing the
model convergence.

2) We derive a new convergence upper bound for federated
learning with probabilistic client selection in noncon-
vex settings. Our results reflect a convergence rate of
O(1/T). This completes the convergence analysis for
federated learning in both the convex and nonconvex
cases.

3) We derive the analytical expression of the overall
latency of federated learning with probabilistic par-
ticipant selection and build the analytical relationship
between the latency, convergence constraint, system and
data heterogeneity, and control variables. To address
the complexities of the mixed integer nonlinear pro-
gramming problem, we introduce a hybrid solution that
integrates grid search techniques with the polyhedral
active set algorithm.

4) Through the numerical analyses and experiments on the
real-world data, we demonstrate that our proposed client
selection scheme is more efficient in reducing overall
training time in comparison with existing methods.

In the remainder of this article, we first introduce the system
model and problem formulation in Section II. Next, Section III
delves into the convergence upper bound of our algorithm and
the solution to the optimization problem. Following this, we
present the numerical analyses and experimental results on the
real-world data sets in Section IV. We conclude this article in
Section V.

II. SYSTEM MODEL

A. Federated Learning

We consider a federated learning system with a server and
N clients with the index set N = {1, 2, . . . , N}, where the ith
client owns its private data set Di = {ξ i

j | j = 1, 2, . . . , |Di|}
with size |Di|. Here, ξ i

j denotes the jth data sample at the ith
client. The whole data set across clients is denoted as D =⋃

i∈N Di with size |D|.
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Algorithm 1: Generalized FedAvg With Probabilistic
Participation

Input: x0, γ, I, p
Output: {xr : ∀r}

1 for t = 0, 1, . . . , T − 1 do
2 select M participants according to p with replacement

to form Mt;
3 for i ∈Mt in parallel do
4 yi

t,0 ← xt;
5 yi

t,I ← ClientUpdate(yi
t,0, γ );

6 end
7 xt+1 ←∑

i∈Mt
di

Mpi
yi

t,I ;
8 end
9 ClientUpdate (yi

t,0, γ ):
10 for j = 0, 1, . . . , I − 1 do
11 yi

t,j+1 ← yi
t,j − γ∇Fi(yi

t,j, ξ
i
j );

12 end

The goal of federated learning is to find an optimal model
parameter x to minimize a global objective function f (x) over
the data set D, which can be formulated as

min
x

f (x) :=
N∑

i=1

diFi(x) (1)

where di = |Di|/|D| denotes the ratio of the size of the local
data set at the ith client to the whole data set and

∑N
i=1 di = 1.

Fi(x) is the local objective function for the ith client, computed
over the data set Di as

Fi(x) := 1

|Di|
∑

ξ i
j∈Di

Fi

(
x; ξ i

j

)
. (2)

Client selection typically occurs during each round of
federated learning to prevent network congestion due to
full participation. This partial participation was proposed as
FedAvg [31] by uniformly sampling participants.

We generalize FedAvg as shown in Algorithm 1, which
allows probabilistic client selection. Moreover, we will show
that the aggregated model in Algorithm 1 is unbiased to the
one with full participation later. Specifically, the algorithm
executes for T rounds in total after the stopping criterion
is satisfied. For each round, there are three major stages as
follows.

1) Global Model Broadcasting: The sever samples M
clients to participate in the tth round of training to
form Mt, according to the client selection probability
p = [p1, p2, . . . , pN]. The global model weights, xt are
broadcasted to the selected participants.

2) Local Updating: The ith participant initializes its local
model yi

t,0 with the global one and performs model
training on the private data set Di by applying the
stochastic gradient descent (SGD) algorithm as follows:

yi
t,j+1 ← yi

t,j − γ∇Fi

(
yi

t,j, ξ
i
j

)
(3)

where j = 0, 1, 2, . . . , I − 1 denotes the epoch index of
local updating and γ denotes the step size. ξ i

j ∈ Di is a

randomly selected data sample. After I epochs, the local
model weights will be submitted to the server.

3) Aggregation: After the server successfully receives all
the model updates from the selected participants, the
aggregation is performed to update the global model

xt+1 =
∑

i∈Mt

di

Mpi
yi

t,I . (4)

The stopping criterion is as follows:

E‖∇f (xT)‖2 ≤ ε (5)

where ε is a small number.
In Algorithm 1, the participation probability p should be

properly chosen in consideration of the data heterogeneity
and latency differences among the clients. Furthermore, the
number of participants M and the number of global rounds
T also affect the overall training time. Intuitively, a larger M
and a greater T enhance the convergence of the global model.
Nevertheless, a larger M increases the likelihood of selecting
clients with the poorest response time. This straggler effect
may consequently prolong the federated learning training
process. The selection of T follows similar considerations.

Therefore, to achieve time-efficient training and model
convergence, we explore a novel training scheduling policy
by solving a joint optimization problem of total time cost and
model convergence, which yields the optimal client-selection
probability p, number of participants M, and number of global
rounds T .

B. Latency Model

For each training round, there are four phases where latency
occurs: 1) global model broadcasting; 2) local computing;
3) model uploading; and 4) model aggregation. However, the
time cost of the model aggregation is the negligible given
simple operation.

Similar to the previous work in wireless federated learn-
ing [34], we make an assumption that each edge device
possesses a comparatively consistent computational capability
yet operates within varying communication environments.
Therefore, we use δt

i to denote the response time of the
ith client in the tth round, resulting from the global model
broadcasting, local computing, and model uploading. Different
clients may exhibit various latencies. Inspired by the schedul-
ing optimization theory [35], we adopt the short-processing
time first rule to schedule the model transmission of partici-
pants. In the tth round, we can sort the latency of each client
in ascending order as δt

1 ≤ δt
2 ≤ · · · ≤ δt

N .
In synchronous federated learning, the server waits for all

the model updates from the participants to be received and
then starts to aggregate the models. As a result, the latency
for the tth round is determined by the client with the longest
response time, i.e.,

�t = max
i∈Mt

δt
i . (6)

Accordingly, the overall latency for T rounds of training is

� =
T∑

t=1

�t. (7)
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C. Client Selection Model

We assume that all the clients are willing to participate
in every round of federated learning training once they are
selected. We consider general probabilistic client selection
according to p = [p1, p2, . . . , pN] in each round, where∑N

i=1 pi = 1. Similar to [29], [36], and [37], the tth round
of participant set Mt is generated by selecting for M times
from N clients according to p with replacement, which means
that the same client could appear in Mt multiple times. The
sampling scheme without replacement can also be extended
from our work, but for ease of exposition, we only discuss
sampling with replacement.

Let Xt
i be a random variable denoting the number of times

the ith client is selected in the tth round. Then, Xt
i follows

a binomial distribution with parameters M and pi, i.e., Xt
i ∼

Binomial(M, pi). The expectation of Xt
i is given by

E
[
Xt

i

] = Mpi. (8)

As a result, the expected model updates from the ith client
can be expressed as

Ep
(
yi

t,I

) = E
[
Xt

i

]
yi

t,I = Mpiy
i
t,I . (9)

D. Problem Formulation

As discussed, the client selection probability p determines
the probability of selecting the straggler, which greatly affects
the per-round latency. Furthermore, more training rounds T
and a larger number of participants M are beneficial to the
model convergence, while they potentially increase the overall
latency.

Therefore, we formulate a joint optimization problem with
respect to p, T , and M to minimize the overall latency
of federated learning training while satisfying the model
convergence requirement. The problem can be formulated as
follows:

min
p,T,M

T∑

t=1

max
i∈Mt

δt
i (P1)

s.t. E‖∇f (xT)‖2 ≤ ε (P1a)
N∑

i=1

pi = 1 (P1b)

T ∈ Z
+, M ∈ Z

+ (P1c)

where E‖∇f (xT)‖2 denotes the expected gradient norm of f
after T rounds of training where the randomness is from the
local SGD and client selection. Equation (P1a) denotes the
model convergence constraint and (P1b) is a basic constraint
of a probability distribution.

In practice, maxi∈Mt δt
i is a random variable due to the

probabilistic client selection, which makes it impossible to
analytically solve the problem. Instead, we change the objec-
tive to be the expected overall latency, i.e.,

min
p,T,M

E(�). (10)

Moreover, we need to explicitly express E‖∇f (xT)‖2 w.r.t
p, T , and M, which will be discussed in Section III-C.

III. TRAINING SCHEDULING WITH CLIENT-SELECTION

PROBABILITY

In this section, we aim to transform (P1) into a more
tractable form. First, we derive the analytical expression
of E(�). Through convergence analysis, we obtain the
upper bound of E‖∇f (xT)‖2 and utilize it to reformu-
late (P1a). Subsequently, we formulate and solve an alternative
optimization problem, (P2) to determine the optimal training
scheduling in terms of p, T , and M.

A. Analytical Expression of Expected Latency

Let qi denote the probability of the ith client being selected
in the tth round and being a straggler. According to (6) and (7),
we have the expected overall latency as follows:

E(�) =
T∑

t=1

N∑

i=1

qiδ
t
i

= T
N∑

i=1

qiδi (11)

where δi = (1/T)
∑T

t=1 δt
i denotes the average respond time

of the ith client.
Moreover, the ith client being a straggler means that only

clients 1, 2, . . . , i are the candidates of participants in this
round. Therefore, we have

qi = P(i is a straggler)

=
M∑

m=1

(
M

m

)

pm
i

⎛

⎝
i−1∑

j=1

pj

⎞

⎠

M−m

=
⎛

⎝
i∑

j=1

pj

⎞

⎠

M

−
⎛

⎝
i−1∑

j=1

pj

⎞

⎠

M

(12)

where the final equality can be obtained according to the
Binomial Theorem.

As a result, the analytical expression of the expected overall
latency is given by

E(�) =
N∑

i=1

⎡

⎣

⎛

⎝
i∑

j=1

pj

⎞

⎠

M

−
⎛

⎝
i−1∑

j=1

pj

⎞

⎠

M⎤

⎦δiT. (13)

Let li = (
∑i

j=1 pj)
M , (13) can be rewritten as

E(�) =
N∑

i=1

(li − li−1)δiT

(a)=
[

N∑

i=1

liδi −
N∑

i=2

li−1δi

]

T

=
[

N∑

i=1

liδi −
N−1∑

i=1

liδi+1

]

T

(b)=
[

δN −
N−1∑

i=1

li(δi+1 − δi)

]

T
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=
⎡

⎣δN −
N−1∑

i=1

⎛

⎝
i∑

j=1

pj

⎞

⎠

M

(δi+1 − δi)

⎤

⎦T (14)

where (a) uses l0 = 0 and (b) uses lN = 1.

B. Adjusted Aggregation Weights for Probabilistic Selection

Despite only M participants being selected for the tth round,
we demonstrate that the probabilistic client selection remains
unbiased toward full participation by adjusting aggregation
weights, as exhibited in line 7 of Algorithm 1.

Consider FedAvg with full participation. The aggregation
rule is given by

x̄t+1 =
N∑

i=1

diy
i
t,I . (15)

Let ai denote the adjusted aggregation weight for the ith
client. The aggregated model can be expressed as xt+1 =∑

i∈Mt aiyi
t,I . Therefore, the expected global model with p is

Ep(xt+1) =
N∑

i=1

aiEp
(
yi

t,I

) (a)=
N∑

i=1

aiMpiy
i
t,I (16)

where (a) is using (9).
To make Ep(xt+1) unbiased to x̄t+1, we have

N∑

i=1

aiMpiy
i
t,I =

N∑

i=1

diy
i
t,I . (17)

Then, we can easily obtain

ai = di

Mpi
. (18)

Therefore, the unbiased aggregation rule in federated learn-
ing with the client-selection probability p is

xt+1 =
∑

i∈Mt

di

Mpi
yi

t,I . (19)

C. Convergence Analysis

In the following, we will derive the convergence upper
bound for Algorithm 1. To facilitate the convergence analysis,
we use some common assumptions [12], [29], [37] about local
objective functions {Fi}:

Assumption 1: Fi(x) is continuous and differentiable, i.e.,
∇Fi(x) exists. Fi(x) is lower bounded by Fi(x∗).

Assumption 2: The gradient of Fi(x) is L-Lipschitz contin-
uous: for any x, y ∈ dom(Fi), we have ‖∇Fi(x) − ∇Fi(y)‖ ≤
L‖x− y‖.

Assumption 3: The expected second moment of ∇Fi(x) is
bounded: for any data sample ξ i

j ∈ Di and when there exists
a constant Gi > 0, we have E(‖∇Fi(x, ξ i

j )‖2) ≤ G2
i ∀x ∈

dom(Fi).
It is worth noting that there are some related studies on

the convergence analysis of FedAvg with the client selec-
tion [29], [37]. However, those results rely on the strongly
convex assumption of Fi, which is unrealistic for the deep
learning models. Instead, our convergence upper bound can be
used in nonconvex scenarios.

With the adjusted aggregation rule by (19), we present
the convergence result of federated learning with the client-
selection probability.

Theorem 1: Let Assumptions 1 to 3 hold. When γ ≤
(1/LI), the federated learning with the client-selection proba-
bility p satisfies

min
t

E‖∇f (xt)‖2 ≤ 2�

Tγ I
+ (I − 1)(2I − 1)L2γ 2

6

N∑

i=1

diG
2
i

+ LIγ

M

N∑

i=1

d2
i G2

i

pi
(20)

where � = f (x0)− f (x∗).
We first use the L-Lipschitz gradient assumption to build the

relationship between f (xtk) and f (xtk+1), denoting the function
values of the kth and (k + 1)th global models, respectively.
We can find that ‖∇f (xtk)‖2 is upper bounded by an affine
function of f (xtk) − f (xtk+1). After summing up ‖∇f (xtk)‖2
for k = 0, 1, . . . , T − 1, we can find the upper bound of
mint E‖∇f (xt)‖2. The full proof is in Appendix A.

From Theorem 1, it is noteworthy that our results reflect
a convergence rate of O(1/T). This rate aligns with the
established convergence results for scenarios assuming strong
convexity of local functions {Fi} [37].

Corollary 1: Choosing γ = (1/LI
√

T), where T ≥ 1, we
have

min
t

E‖∇f (xt)‖2 ≤ 1√
T

(

2L� + 1

M

N∑

i=1

d2
i G2

i

pi

)

+ 1

T

(I − 1)(2I − 1)

6I2

N∑

i=1

diG
2
i (21)

where � = f (x0)− f (x∗).
Directly plugging γ = (1/LI

√
T) into (20) produces (21).

Remark 1: Gi measures the degree of none independent and
identically distributed (non-I.I.D.) distribution across clients.
When clients’ data are I.I.D., we have G1 = G2 = · · · = Gn =
0, which makes upper bound be O(1/

√
T).

Remark 2: More global rounds T and more participants M
reduce the upper bound.

Corollary 2: Let ρ = (maxi G2
i /[maxi diG2

i ]) be the hetero-
geneity ratio. When T ≥ Td, where Td = 
(M2ρ2/9)�, the
first term in (20) dominates. Therefore, we have

min
t

E‖∇f (xt)‖2 ≤ 1√
T

(

2L� + 1

M

N∑

i=1

d2
i G2

i

pi

)

(22)

where � = f (x0)− f (x∗).
Proof of Corollary 2 can be found in Appendix B.

D. Alternative Optimization Problem

To reformulate (P1), we use (22) to replace the convergence
constraint and use the new expected overall latency E(�)

in (14) as the objective function. We have

min
p,T,M

⎡

⎣δN −
N−1∑

i=1

⎛

⎝
i∑

j=1

pj

⎞

⎠

M

(δi+1 − δi)

⎤

⎦T (P2)
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s.t.
1√
T

(

α + 1

M

N∑

i=1

d2
i G2

i

pi

)

≤ ε (P2a)

N∑

i=1

pi = 1 (P2b)

T ∈ Z
+, M ∈ Z

+ (P2c)

where α = 2L�.
Problem (P2) is a mixed integer nonlinear programming

problem due to the inclusion of T and M, and its objective
function is nonconvex concerning p and M.

Before we present our solution to (P2), we first discuss a
special case where the response times are uniform across all
the clients. Under this uniform response time condition, (P2)
can be simplified into a convex optimization problem where
the objective function becomes δNT . This special case is
noteworthy because it allows us to apply a different analytical
approach to find the optimal solution. Solving the convex
problem by the method of the Lagrange multipliers produces
Corollary 3 and we refer to its solution as norm selection.

Corollary 3 (Norm Selection): When δ1 = δ2 = · · · =
δN , (P2) is a convex problem and its optimal client selection
probability is p∗i = (diGi/[

∑N
i=1 diGi]) for the ith client.

E. Solution to P2

With continuous (p) and integer (T, M) variables, (P2) is
a mixed integer nonlinear programming problem, which is
difficult to solve directly in general.

As M denotes an integer representing the number of par-
ticipants, we have M ∈ {1, 2, . . . , N}, yielding a maximum of
N candidates for (P2)‘s optimal solution. Therefore, we apply
grid search to find the best M. Given fixed M, we utilize the
polyhedral active set algorithm to obtain the optimal (p∗, T∗).
Subsequently, we calculate the objective function of (P2) using
the candidate solution (p∗, T∗, M). Finally, we obtain the
optimal solution (p∗, T∗, M∗) that yields the minimized value
of the objective function.

It is worth noting that the grid search method results in
a computational complexity that is linear with respect to
the number of clients N. As N increases, the complexity of
the solution also increases. However, since the computation
is performed offline before the actual training process, it
does not impact the runtime performance. For extremely
large N, alternative strategies, such as adaptive sampling or
hierarchical search methods can be employed to further reduce
the computational complexity.

Specifically, we first relax T to be a continuous variable,
which converts (P2c) to be T ∈ R

+. According to (P2)
and (P2a), we can see that T∗i satisfies

1√
T∗

(

α + 1

M

N∑

i=1

d2
i G2

i

pi

)

= ε (23)

i.e.,

T∗ = 1

ε2

(

α + 1

M

N∑

i=1

d2
i G2

i

pi

)2

. (24)

With (24) and fixed M, we can reformulate (P2) as follows:

min
p

⎡

⎣δN −
N−1∑

i=1

⎛

⎝
i∑

j=1

pj

⎞

⎠

M

(δi+1 − δi)

⎤

⎦ (P3)

×
(

α + 1

M

N∑

i=1

d2
i G2

i

pi

)2

s.t.
N∑

i=1

pi = 1. (P3a)

Problem (P3) represents a nonlinear optimization challenge
with polyhedral constraints. To address this issue, we employ
the polyhedral active set algorithm [38], which is comprised
of two distinct phases: the initial phase implements the
gradient projection technique, whereas the subsequent phase
incorporates an appropriate algorithm tailored for linearly
constrained optimization problems. By alternating between
these two phases according to the well-defined branching
criteria, the polyhedral active set algorithm guarantees the
convergence to a stationary point.

Therefore, for any given M, p∗ is solved by (P3) and T∗ is
given by

T∗ =
⎡

⎢
⎢
⎢

1

ε2

(

α + 1

M

N∑

i=1

d2
i G2

i

pi

)2
⎤

⎥
⎥
⎥

(25)

where 
·� denotes the ceiling function.
Finally, by searching M ∈ {1, 2, . . . , N}, we obtain the

suboptimal solution (p∗, T∗, M∗) of (P3), which is our training
scheduling for federated learning.

F. Estimates of Unknown Parameters

As shown in Section III-E, p∗i and T∗i are decided by di,
Gi, and α, which are unknown to the server prior to the
federated learning training. Therefore, we need to estimate
those unknown parameters.

We run one trial experiment with pa = [d1, d2, . . . , dN].
The trial runs total T rounds and in each round M clients are
selected according to the probabilistic client selection. Suppose
εa denotes the loss value after T-rounds training for pa and α̃

be the estimate of α, we have the following equality according
to (23):

εa = 1√
T

(

α̃ + 1

M

N∑

i=1

diG
2
i

)

(26)

where di and Gi can be reported by clients along with their
model updates.

By solving (26), we have α̃ given by

α̃ = √Tεa − 1

M

N∑

i=1

diG
2
i . (27)

To reduce the estimation error, we can record different sets
of (T, ε) to obtain an averaged α̃ in just one trial experiment.
Regarding the cost, this estimation process does not add much
communication overhead since only two numbers (di and Gi)
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are added to the uploaded data. The computation cost is also
low because the trial experiment does not need to be a full
training process. T can be set very small as long as all the
clients have participated at least once. Furthermore, the trained
model in the estimation process can be reused as a good initial
model for the experiment with (p∗, T∗, M∗), which avoids
repeating the experiments.

IV. EXPERIMENT

A. Numerical Experiments

We conduct a series of numerical experiments to study
the effect of parameters, such as M, δi, di, and Gi on the
solution to (P3). We also compare our optimal client-selection
probability p∗ with the other probabilities in terms of the
number of global rounds T and the overall latency E(�).

1) Reformatting (P3): To simplify the parameter set, we
define the data factor Bi = d2

i G2
i and the neighboring latency

difference Ci = δi+1− δi. Therefore, (P3) can be reformulated
as follows:

min
p

⎡

⎣δN −
N−1∑

i=1

Ci

⎛

⎝
i∑

j=1

pj

⎞

⎠

M⎤

⎦

(

α + 1

M

N∑

i=1

Bi

pi

)2

(P4)

s.t.
N∑

i=1

pi = 1. (P4a)

2) Experiment Settings (Hyperparameters): We utilize the
SuiteOPT toolbox [38] to solve our optimization problem (P4).
With α = 1 and ε = 10−3, we perform an abla-
tion study on the other parameters in (P4). Specifically,
we explore the impacts of the total number of clients
N ∈ {10, 50, 100} and the participation ratio M/N ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the selection
probability. Furthermore, we study the effect of the discrep-
ancy of the local data by modifying the order of Border ∈
{1, 10, 103} and uniformly sampling Bi ∈ (0, Border]. Similarly,
to demonstrate the effect of the latency differences of the
clients, we change the order of Corder ∈ {1, 10, 103} and
uniformly sample Ci ∈ (0, Corder]. We repeat the experiment
ten times for each combination of parameters.

Evaluation Metrics: We adopt three metrics to evaluate
the performance of different client-selection probabilities:
1) expected per-round latency E(�t); 2) global rounds T; and
3) overall latency E(�) = E(�t)T . We can compute E(�t)

and T as

E
(
�t) = δN −

N−1∑

i=1

Ci

⎛

⎝
i∑

j=1

pj

⎞

⎠

M

(28)

and

T =
⎡

⎢
⎢
⎢

1

ε2

(

α + 1

M

N∑

i=1

Bi

pi

)2
⎤

⎥
⎥
⎥

(29)

respectively, where Bi = d2
i G2

i and Ci = δi+1 − δi.
Benchmarks: We compare our solution to (P4), denoted as

p∗, with the two other selection schemes. The first one is

the uniform selection, where p1 = p2 = · · · = pN = 1/N,
which is the selection scheme used in FedAvg [31]. The second
one is the norm selection, where participants are selected
according to pi calculated by the server based on the norms
of participants’ updates [15].

3) Experiment Results: The impact of N and M/N on the
optimal per-round latency and global rounds is greater than
that of Corder and Border. Fig. 2(a) and (b) illustrate the average
optimal per-round latency with various values of Corder when
N = 10 and N = 100, respectively. The per-round latency for
Corder = 10 and Corder = 1000 is normalized by eliminating
the effect of the magnitude of C, allowing for a direct
comparison with Corder = 1. It is observed that the different
Corder values produce similar per-round latencies. However,
per-round latency dramatically increases as the number of
clients N or the participant ratio M/N increases. Similarly,
as shown in Fig. 2(c) and (d), the number of global rounds
increases as fewer clients participate in training per round or
the number of clients increases. In contrast, different values of
Border play a small role in determining the number of global
rounds. These observations suggest that the magnitude of Ci

and Bi do not change the optimal selection probability p∗.
Fig. 3(a) shows the optimal overall latency with various N

and M/N for Corder = 1 and Border = 1. It shows that as
the number of clients N decreases and the participation ratio
M/N increases, the overall latency decreases. Additionally,
the variance of the overall latency also decreases when N
decreases and M/N increases. These results suggest that
smaller client populations and higher participation ratios result
in more efficient communication overall.

Fig. 3(b) and (c) illustrate the difference in the overall
latency between our selection scheme and uniform selection,
and norm selection, respectively. It is observed that our
selection scheme has the smallest overall latency. Interestingly,
when N is sufficiently large, norm selection provides a good
estimate of the optimal selection probabilities. This is further
demonstrated in experiments conducted on the real-world
data sets.

B. Experiments on Real-World Data Sets

In this section, we evaluate the effectiveness of our client
selection probabilities in the generalized federated learning
process (Algorithm 1) using the real-world data sets.

1) Experimental Settings (Platform): We develop a cus-
tomized federated learning platform using the Tensorflow
federated framework [39]. This platform allows for the mul-
timachine simulation runtime experiments and can also be
extended to multidevice implementation. Our experiments are
conducted on a high-performance computing (HPC) cluster
comprised of eight nodes, each of which is equipped with two
32-core Intel CPUs and four NVIDIA Ampere A100 GPUs
with NVLink interconnect.

Data Sets and Model: We use the EMNIST_LETTERS [40]
and FASHION_MNIST [41] data sets. EMNIST_LETTERS
contains images of 26 lowercase letters and
FASHION_MNIST contains ten different image classes. The
training data of each data set is partitioned into clients’ data
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Fig. 2. Impact of Corder and Border on optimal per-round latency and global rounds. The values of per-round latency for Corder = 10 and Corder = 1000 are
normalized to allow for a direct comparison with Corder = 1. Similarly, the values of global rounds for Border = 10 and Border = 1000 are also normalized
for the same reason. (a) Per-round latency when N = 10. (b) Per-round latency when N = 100. (c) Global rounds when N = 10. (d) Global rounds when
N = 100.

Fig. 3. Optimal overall latency and latency difference comparison. (a) Optimal overall latency with various N and M/N. (b) Latency difference between
ours and uniform selection. (c) Latency difference between ours and norm selection.

sets, while the testing data is used to evaluate the performance
of our method. We use LeNet-5 [42] as the classification
model.

Latency Heterogeneity: To emulate latency differences
among the clients, we independently sample δ ∼ U(0, 1) for
the N clients and then arrange them in an ascending order
such that 0 < δ1 ≤ δ2 ≤ . . . ≤ δN ≤ 1. While δi is in
seconds in the following results, this simulation is capable of
representing the normalization of any latency heterogeneity
scheme.

Data Heterogeneity: To simulate data heterogeneity in
real-world federated learning applications, we employ three
different data partition configurations: one I.I.D. and two non-
I.I.D. configurations.

1) I.I.D: The training data is randomly partitioned among
clients such that each client has an equal amount of data
and an equal amount for each class.

2) Class: The training data is partitioned among the clients
based on the classes, with each client having the data
from only C randomly selected classes and with no
overlapping data between the clients, while the data
volume in each client is the same. We let a client
own 50% classes of the data set, i.e., C = 13 for
EMNIST_LETTERS and C = 5 for FASHION_MNIST.

3) Dir: The training data is partitioned among the clients
following a Dirichlet process, with each client having
a different amount of data and a nonuniform class
distribution. We set the Dirichlet parameter α = 0.1.
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TABLE I
OVERALL LATENCY IN SECONDS OF VARIOUS METHODS UNDER DIFFERENT DATA SETS AND DATA HETEROGENEITY SETTINGS. (· ×) DENOTES THE

ACCELERATION RATIO OF OURS IN COMPARISON WITH BENCHMARKS IN TERMS OF THE OVERALL LATENCY

Fig. 4. Performance comparison under I.I.D. data setting. (a) Global loss on EMNIST_LETTERS data set. (b) Test accuracy on EMNIST_LETTERS data
set. (c) Global loss on FASHION_MNIST data set. (d) Test accuracy on FASHION_MNIST data set.

Hyperparameters: For our experiments, we set the total
number of clients to N = 10 for FASHION_MNIST and
N = 40 for EMNIST_LETTERS. The number of partic-
ipants is M = 5 for FASHION_MNIST and M = 10
for EMNIST_LETTERS. In each round, the participants are
selected according to given selection schemes, and each
participant updates the local model in I = 5 epochs using
SGD with the batch size of 256. The default parameters of the
Adam optimizer in Tensorflow are used, i.e., the learning rate
is 0.001 and the exponential decay rates are 0.9 and 0.999,
respectively [43].

Benchmarks: To evaluate the performance of our proposed
selection scheme, we compare it with these existing schemes:

1) Uniform Selection [31]: The probability for each client
to be selected is identical, i.e., p1 = p2 = · · · = pN =
1/N.

2) Norm Selection [15]: Participants are selected according
to pi, where pi is calculated by the server based on the
norms of participants’ updates.

3) Ratio Selection [10]: Participants are selected according
to pi = di, proposed by FedProx.

2) Experiment Results: We evaluate the global loss and test
accuracy of different selection schemes on the two data sets
under different data settings. Each experiment is independently
run ten times with different random seeds and the same seed
is used across different selection schemes. Results averaged
over ten runs are reported.

In Table I, we summarize the overall latency required to
achieve the targeted global loss with various client selection
schemes on EMNIST_LETTERS and FASHION_MNIST. As
is shown, ours outperforms other selection schemes in both
I.I.D. and non-I.I.D. configurations with the lowest overall
latency and achieves up to three times acceleration. More
details are shown by the decreasing global loss in (a) and (c) of
Figs. 4–6.

In comparison with the I.I.D. setting, our approach
attains more acceleration ratios within two non-I.I.D. sce-
narios. Specifically, in contrast to the uniform selection on
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Fig. 5. Performance comparison under Dir data setting. (a) Global loss on EMNIST_LETTERS data set. (b) Test accuracy on EMNIST_LETTERS data set.
(c) Global loss on FASHION_MNIST data set. (d) Test accuracy on FASHION_MNIST data set.

Fig. 6. Performance comparison under Class data setting. (a) Global loss on EMNIST_LETTERS data set. (b) Test accuracy on EMNIST_LETTERS data
set. (c) Global loss on FASHION_MNIST data set. (d) Test accuracy on FASHION_MNIST data set.

EMNIST_LETTERS, our method yields 2.94× and 2.7×
acceleration for Dir and Class categories, respectively, sur-
passing the 1.92× acceleration observed in the I.I.D. scenario.

As shown in (b) and (d) of Figs. 4–6, our approach, in
some cases, achieves superior test accuracy with much less
overall latency required for the convergence of the training
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model. In the non-I.I.D. scenarios, our methodology exhibits
enhanced robustness in comparison with the uniform selection,
as evidenced by the mitigation of test accuracy fluctuations.

It is worth noting that the norm-based selection frequently
facilitates the reduction of the overall latency relative to the
uniform selection as shown in Table I. It indicates that the
prior knowledge of di and Gi is helpful for a better client
selection scheme. On the other hand, the norm selection is not
optimal because it ignores the latency differences among the
clients.

V. CONCLUSION

We have introduced a novel client selection scheme
designed to minimize the overall training time of federated
learning by considering both the data and latency heterogene-
ity among the clients. Through the derivation of a convergence
upper bound with probabilistic client selection, we have estab-
lished the theoretical convergence guarantee for our proposed
scheme. Our numerical analyses and experimental evaluations
on the real-world data sets have demonstrated the superiority
of our selection scheme in achieving faster convergence rates
and competitive test accuracy, even in scenarios with highly
non-I.I.D. data. Notably, our scheme obtains up to three times
acceleration in comparison with the random client selection.

In the future, conducting extensive experiments on the large-
scale data sets, such as ImageNet, and using complex models,
such as ResNet-50 and vision transformers (ViTs), will further
explore the applicability of our optimization framework across
diverse learning scenarios. Additionally, developing an unified
framework to evaluate both the probabilistic selection and
dynamic selection methods is an intriguing research direction.
Moreover, implementing a federated learning testbed with
real federated clients will provide additional insights into
the practical network variability and real-world deployment
challenges.

APPENDIX A
PROOF OF THEOREM 1

Throughout the proof, we denote tk = kI, k = 0, 1, . . . , T − 1
as the time instants when global aggregation happens.
We define ȳtk,I =

∑N
i=1 diyi

tk,I
, which denotes the virtual

aggregated model with all the N participants. To aid the proof
of Theorem 1, we first prove some important lemmas.

A. Lemma 1 and Proof

Lemma 1: Following Algorithm 1, when xtk is given, the
expectation of xtk+1 is unbiased to ȳtk,I , i.e.,

E
(
xtk+1 |xtk

) = Etk

(
xtk+1

) = ȳtk,I (30)

where Etk denotes the conditional expectation E(·|tk).
Proof: Let Xtk

i be a random variable denoting the number
of times the ith client is selected in the tkth round. Then, Xtk

i
follows a binomial distribution with parameters M and pi, i.e.,
Xtk

i ∼ Binomial(M, pi). The expectation of Xtk
i is given by

E[Xtk
i ] = Mpi.

Since, the participants of each round are selected according
to the probability p with replacement, the expectation of the
aggregated model Etk(xtk+1) is given by

Etk

(
xtk+1

) = E

⎛

⎝
∑

i∈Mtk

di

Mpi
yi

tk,I |xtk

⎞

⎠

=
N∑

i=1

E
[
Xtk

i

] di

Mpi
yi

tk,I =
N∑

i=1

diy
i
tk,I = ȳtk,I .

B. Lemma 2 and Proof

Lemma 2: For given xtk , let Mtk = {i1, i2, . . . , iM} ⊂
[N] in Algorithm 1, where il denotes the index of the lth
participant. Then, for any il, the expectation of (dil/pil)y

il
tk,I

is
unbiased to ȳtk,I , i.e.,

Etk

(
dil

pil
yil

tk,I

)

= ȳtk,I . (31)

Proof: For certain il in Mtk , it could be any index a ∈
[1, N] with the probability pa. Therefore

Etk

(
dil

pil
yil

tk,I

)

= Etk

N∑

a=1

P(il = a)
da

pa
ya

tk,I

= Etk

N∑

a=1

daya
tk,I = ȳtk,I .

C. Lemma 3 and Proof

Lemma 3: Given xtk , the variance of xtk+1 satisfies

Etk

∥
∥xtk+1 − ȳtk,I

∥
∥2 ≤ I2γ 2

M

N∑

i=1

d2
i G2

i

pi
. (32)

Proof:

Etk

∥
∥xtk+1 − ȳtk,I

∥
∥2 = Etk

∥
∥
∥
∥
∥

M∑

l=1

dil

pil
yil

tk,I
− ȳtk,I

∥
∥
∥
∥
∥

2

= Etk

∥
∥
∥
∥
∥

1

M

M∑

l=1

(
dil

pil
yil

tk,I
− ȳtk,I

)∥∥
∥
∥
∥

2

(a)= 1

M2
Etk

M∑

l=1

∥
∥
∥
∥

dil

pil
yil

tk,I
− ȳtk,I

∥
∥
∥
∥

2

(b)= 1

M2

N∑

i=1

MpiEtk

∥
∥
∥
∥

di

pi
yi

tk,I − ȳtk,I

∥
∥
∥
∥

2

= 1

M

N∑
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piEtk

∥
∥
∥
∥

di

pi
yi

tk,I −
di

pi
yi
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(

ȳtk,I −
di

pi
yi
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)∥
∥
∥
∥

2
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M
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i=1

piEtk

∥
∥
∥
∥

di

pi
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tk,I −
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∥
∥
∥
∥

2
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M
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i=1

d2
i
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∥
∥
∥
∥
∥
∥
−
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j=0

γ∇Fi

(
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)
∥
∥
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∥
∥
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2
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(d)≤ 1

M

N∑

i=1

d2
i

pi
γ 2I

I−1∑

j=0

Etk

∥
∥
∥∇Fi

(
yi

tk,j, ξj

)∥
∥
∥

2

(e)≤ 1

M
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i=1

d2
i

pi
γ 2I2G2

i =
I2γ 2

M

N∑

i=1

d2
i G2

i

pi

where (a) uses Lemma 2, (b) takes expectation over client
selection, (c) uses E‖x−Ex‖2 ≤ E‖x‖2, (d) uses the Jensen’s
inequality, and (e) uses Assumption 3.

D. Proof of Theorem 1

Proof: According to Assumption 2, for any given xtk , we
have

Etk f
(
xtk+1

) ≤ Etk(f (xtk)+
〈
xtk+1 − xtk ,∇f (xtk)

〉

+ L

2

∥
∥xtk+1 − xtk

∥
∥2

). (33)

Consider the third term in (33)

L

2
Etk

∥
∥xtk+1 − xtk

∥
∥2

(a)= L

2

(
Etk

∥
∥xtk+1 − ȳtk,I

∥
∥2 + Etk

∥
∥ȳtk,I − xtk

∥
∥2
)

(b)≤ LI2γ 2

2M
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i G2

i

pi
+ L

2
Etk

∥
∥ȳtk,I − xtk

∥
∥2 (34)

where (a) uses Lemma 1, where Etk(xtk+1 − ȳtk,I) = 0 and (b)

uses Lemma 3.
Consider the second term in (33)

Etk
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(35)

where (a) uses −〈a, b〉 = (1/2)(‖a− b‖2 −‖a‖2 −‖b‖2) and
(b) uses Etk(ȳtk,I − xtk) = −γEtk(

∑N
i=1 di

∑I−1
j=0 ∇Fi(yi

tk,j
)).

The first term in (35) is
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tk,j)−∇Fi(xtk)

)
∥
∥
∥
∥
∥
∥

2

(a)≤ Etk

N∑

i=1

di

I−1∑

j=0

I
∥
∥
∥∇Fi

(
yi

tk,j

)
−∇Fi

(
xtk

)∥∥
∥

2

(b)= Etk

N∑

i=1

di

I−1∑

j=1

I
∥
∥
∥∇Fi

(
yi

tk,j

)
−∇Fi

(
xtk

)∥∥
∥

2

(c)≤ I
N∑

i=1

di

I−1∑

j=1

L2
Etk

∥
∥
∥yi

tk,j − xtk

∥
∥
∥

2

(d)= I
N∑

i=1

di

I−1∑

j=1

L2
Etk

∥
∥
∥
∥
∥
∥
−

j−1∑

g=0

γ∇Fi

(
yi

tk,g, ξg

)
∥
∥
∥
∥
∥
∥

2

(e)≤ IL2γ 2
N∑

i=1

di

I−1∑

j=1

j−1∑

g=0

Etk

∥
∥
∥∇Fi

(
yi

tk,g, ξg

)∥
∥
∥

2
j

(f )≤ IL2γ 2
N∑

i=1

di

I−1∑

j=1

j−1∑

g=0

G2
i j

(g)= I2(I − 1)(2I − 1)L2γ 2

6

N∑

i=1

diG
2
i (36)

where (a) and (e) use the Jensen’s inequality, (b) holds
because ∇Fi(yi

tk,0
) = ∇Fi(xtk), (c) uses Assumption 2, (d)

uses the update rule of SGD, (f ) uses Assumption 3, and (g)

holds because of
∑I−1

j=1 j2 = [I(I − 1)(2I − 1)/6].
Plugging (36) back, (35) becomes

Etk

〈
xtk+1 − xtk ,∇f

(
xtk

)〉

≤ I(I − 1)(2I − 1)L2γ 3

12

N∑

i=1

diG
2
i

− 1

2Iγ
Etk

∥
∥ȳtk,I − xtk

∥
∥2 − γ I

2
Etk

∥
∥∇f

(
xtk

)∥
∥2

. (37)

Plugging (34) and (37) back in (33), we have

Etk f
(
xtk+1

) ≤ Etk f
(
xtk

)+ I(I − 1)(2I − 1)L2γ 3

12

N∑

i=1

diG
2
i

+
(

L

2
− 1

2Iγ

)

Etk

∥
∥ȳtk,I − xtk

∥
∥2 − γ I

2
Etk

∥
∥∇f

(
xtk

)∥
∥2

+ LI2γ 2

2M

N∑

i=1

d2
i G2

i

pi

(a)≤ Etk f
(
xtk

)+ I(I − 1)(2I − 1)L2γ 3

12

N∑

i=1

diG
2
i

− γ I

2
Etk

∥
∥∇f

(
xtk

)∥
∥2 + LI2γ 2

2M

N∑

i=1

d2
i G2

i

pi
(38)

where (a) holds if γ ≤ 1
IL . Rearranging (38), we have

Etk

∥
∥∇f

(
xtk

)∥
∥2 ≤ 2

γ I

(
Etk f (xtk)− Etk f (xtk+1)

)

+ (I − 1)(2I − 1)L2γ 2

6

N∑

i=1

diG
2
i +

LIγ

M

N∑

i=1

d2
i G2

i

pi
.

(39)

We now have

min
t

E‖∇f (xt)‖2 ≤ min
tk∈{0,I,...,(T−1)I}Etk

∥
∥∇f

(
xtk

)∥
∥2
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≤ 1

T

(T−1)I∑

tk=0

Etk

∥
∥∇f

(
xtk

)∥
∥2

(a)= 2

γ IT
(f (x0)− f (xTI))

+ (I − 1)(2I − 1)L2γ 2

6

N∑

i=1

diG
2
i

+ LIγ

M

N∑

i=1

d2
i G2

i

pi

≤ 2

γ IT

(
f (x0)− f (x∗)

)

+ (I − 1)(2I − 1)L2γ 2

6

N∑

i=1

diG
2
i

+ LIγ

M

N∑

i=1

d2
i G2

i

pi
(40)

where (a) uses the telescoping sum of (39).

APPENDIX B
PROOF OF COROLLARY 2

According to Corollary 1, we have

min
t

E‖∇f (xt)‖2 ≤ 1√
T

(

2L� + 1

M

N∑

i=1

d2
i G2

i

pi

)

+ 1

T

(I − 1)(2I − 1)

6I2

N∑

i=1

diG
2
i .

To make the first term dominate, we simply let

1√
T

(

2L� + 1

M

N∑

i=1

d2
i G2

i

pi

)

≥ 1

T

(I − 1)(2I − 1)

6I2

N∑

i=1

diG
2
i

i.e.,

√
T ≥

(
(I − 1)(2I − 1)

6I2

N∑

i=1

diG
2
i

)

/

(

2L� + 1

M

N∑

i=1

d2
i G2

i

pi

)

.

Let B denote the RHS of the above inequality, we have

B
(a)≤
(

(I − 1)(2I − 1)

6I2

N∑

i=1

diG
2
i

)

/

(
1

M

N∑

i=1

d2
i G2

i

pi

)

(b)≤
(

(I − 1)(2I − 1)

6I2
max

i
G2

i

)

/

(
1

M
min

i
diG

2
i

)

<
M

3

maxi G2
i

mini diG2
i

= M

3
ρ

where (a) uses 2L� ≥ 0; (b) uses the following inequalities:∑N
i=1 diG2

i ≤ maxi G2
i and

∑N
i=1 (d2

i G2
i /pi) ≥ mini diG2

i ; and
ρ = (maxi G2

i /mini diG2
i ).

As a result,
√

T ≥ B when T ≥ 
(M2ρ2/9)�.
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