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A NONLINEAR LEAST-SQUARES CONVEXITY ENFORCING 𝐶0 INTERIOR
PENALTY METHOD FOR THE MONGE–AMPÈRE EQUATION ON

STRICTLY CONVEX SMOOTH PLANAR DOMAINS

SUSANNE C. BRENNER, LI-YENG SUNG, ZHIYU TAN, AND HONGCHAO ZHANG

Abstract. We construct a nonlinear least-squares finite element method for com-
puting the smooth convex solutions of the Dirichlet boundary value problem of the
Monge-Ampère equation on strictly convex smooth domains in ℝ2. It is based on an
isoparametric 𝐶0 finite element space with exotic degrees of freedom that can enforce
the convexity of the approximate solutions. A priori and a posteriori error estimates
together with corroborating numerical results are presented.

1. Introduction

The Monge-Ampère equation is a fundamental partial differential equation in geo-
metric analysis pertaining to affine geometry (cf. [3, 4, 12, 36, 40, 56, 64, 93]). In this
paper we consider the Dirichlet boundary problem of the simplest Monge-Ampère
equation in two dimensions where the right-hand side is a function of the spatial vari-
ables. It is a stepping stone towardsMonge-Ampère equationswithmore general right-
hand sides and boundary conditions that appear in applications such as the prescribed
Gaussian curvature problem and optimal transport.
Let Ω ⊂ ℝ2 be a bounded strictly convex smooth domain. The Dirichlet boundary

value problem for the Monge-Ampère equation is given by

det𝐷2𝑢 = 𝜓 in Ω,(1.1a)
𝑢 = 𝜙 on 𝜕Ω,(1.1b)

where 𝐷2𝑢 is the Hessian of 𝑢. We assume that

𝜙 ∈ 𝐻4(Ω),(1.2)
𝜓 ∈ 𝐻2(Ω) is strictly positive on Ω̄,(1.3)
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and
(1.4)
the boundary value problem (1.1) has a unique strictly convex solution 𝑢 ∈ 𝐻4(Ω).

Our goal is to design a finite element method that can capture such solutions.
Remark 1.1. The assumptions (1.2)–(1.4) are satisfied if 𝜓 ∈ 𝐶3(Ω̄) is strictly positive
on Ω̄ and 𝜙 ∈ 𝐶4,𝛿(Ω̄) for some 𝛿 ∈ (0, 1) (cf. [37, p.371, Remark 2])). The smoothness
and strict convexity of 𝜕Ω are crucial for obtaining the a priori estimates needed for
establishing the existence of the solution. This is the motivation for considering (1.1)
on domains that are not polygons.
Remark 1.2. Throughout this paperwewill follow the standard notation for differential
operators, function spaces and norms that can be found for example in [1, 30, 41].
Remark 1.3. The strict convexity of 𝑢 means that there exists a positive constant 𝛼♯
such that
(1.5) 𝛼♯|𝜉|2 ≤ 𝜉𝑡𝐷2𝑢(𝑥)𝜉 ∀ 𝑥 ∈ Ω, 𝜉 ∈ ℝ2.
The regularity of 𝑢 also ensures that there exists a positive constant 𝛽♯ such that
(1.6) 𝜉𝑡𝐷2𝑢(𝑥)𝜉 ≤ 𝛽♯|𝜉|2 ∀𝑥 ∈ Ω, 𝜉 ∈ ℝ2.
The numerical solution of (1.1) is challenging due to the fully nonlinear nature of

(1.1a) and the convexity condition on the solution. There are different approaches for
different solution classes that can be found for example in [2, 5–11, 13–18, 26–28, 34,
35,39,44–48,52–55,57–62,68–75,78–81,84–90]. Additional references can be found in
the two review articles [51, 82].
Our approach was first proposed in [32] for (1.1) on a convex polygonal domain

(so that basic finite element technology can be employed), where the boundary value
problem is reformulated as a nonlinear least-squares problemwith equality constraints
(from the boundary condition) and inequality constraints (from the convexity of the
solution). The discrete problem is posed on a convexity enforcing finite element space
where the equality and inequality constraints become simple box constraints that allow
the least-squares problem to be solved efficiently. The construction of the convexity
enforcing finite element space is based on the observations that the solution of (1.1)
under the condition (1.3) is strictly convex if and only if Δ𝑢 ≥ 0 inΩ, and that one can
use pointwise values of the Laplacian of a finite element function as degrees of freedom
by going beyond the classical definition of a finite element in [41]. The elementwise
convexity of the discrete solution leads to an elliptic problem in nondivergence form
in the error analysis. The a priori and a posteriori analyses in [32] take advantage of
the results in [83, 91] where discontinuous Galerkin methods for elliptic problems in
nondivergence form on convex domains were investigated.
However the assumption thatΩ is a polygonal domain is inconsistent with the con-

ditions for the well-posedness of the boundary value problem (1.1) mentioned in Re-
mark 1.1. We address this problem in the current paper by extending the methodology
in [32] to strictly convex smooth domains. The challenges are twofold. In the case of
polygonal domains, it is straightforward to use an interpolant of the exact solution of
(1.1) as the boundary condition of the discrete problem, which is crucial for obtaining
the a priori bounds used in the error analysis. Hereweneed to construct an isoparamet-
ric mesh carefully so that we can use (1.1b) to impose an interpolation of the solution
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of (1.1) as the discrete boundary condition and to obtain the correct estimate needed
for establishing the elementwise convexity for a solution of the discrete problem. Sec-
ondly we need to extend many results in [83, 91] for discontinuous Galerkin methods
for polynomial finite element spaces to isoparametric finite element spaces. Since the
estimates for isoparametric finite elementmethods in the literaturemostly only pertain
to problems in 𝐻1(Ω), we have to develop several new estimates for our isoparametric
finite element method that involve the Sobolev space 𝐻2(Ω).
The rest of the paper is organized as follows. The isoparametric finite element space

is constructed in Section 2 and the discrete problem is presented in Section 3. The con-
vergence analysis is carried out in Section 4, followed by numerical results in Section 5
and some concluding remarks in Section 6. Appendices A–D contain the derivations
of several technical results.
Throughout the paper wewill use𝐶 (with or without subscripts) to denote a generic

positive constant independent of the mesh size. We also use the notation 𝐴 ≲ 𝐵 to
represent the statement 𝐴 ≤ (constant) 𝐵, where the positive constant is independent
of the mesh size. The notation 𝐴 ≈ 𝐵 represents the statements that 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

2. An isoparametric finite element space

For a given mesh parameter ℎ, we will construct a convex domain Ωℎ that approx-
imates Ω, a special cubic isoparametric triangulation 𝒯ℎ of Ωℎ and a finite element
space 𝑉ℎ associated with𝒯ℎ. They will be used in Section 3 to define the discrete prob-
lem. We will use ̂𝑇 to denote the reference (closed) simplex with vertices (0, 0), (1, 0)
and (0, 1). Given two points 𝑝1 = (𝑎1, 𝑏1) and 𝑝2 = (𝑎2, 𝑏2), the 2 × 1 vector with first
component 𝑎2 − 𝑎1 and second component 𝑏2 − 𝑏1 will be denoted by 𝒑2 − 𝒑1. The
Euclidean norm is denoted by | ⋅ |.

2.1. The domainΩℎ and the triangulation𝒯ℎ. We begin with a convex polygon Ω̃ℎ
equipped with a quasi-uniform triangulation 𝒯̃ℎ (cf. Figure 2.1) such that

• the vertices of Ω̃ℎ belong to 𝜕Ω,
• each edge of Ω̃ℎ is also the edge of a triangle in 𝒯̃ℎ,
• each triangle in 𝒯̃ℎ has at most two vertices on 𝜕Ω.

Figure 2.1. Ω, Ω̃ℎ and 𝒯̃ℎ

The domainΩℎ and the triangulation𝒯ℎ are obtained by modifying the triangles in
𝒯̃ℎ that have two vertices on 𝜕Ω.
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Recall (cf. [30,41]) the degrees of freedom (dofs) of the cubic Lagrangefinite element
on ̂𝑇 are given by the values of a function ̂𝑣 ∈ 𝑃3( ̂𝑇) at the points ̂𝑝1 = (0, 0), ̂𝑝2 = (1, 0),
̂𝑝3 = (0, 1), ̂𝑝4 = ( 23 ,

1
3 ), ̂𝑝5 = (0, 23 ), ̂𝑝6 = ( 13 , 0), ̂𝑝7 = ( 13 ,

2
3 ), ̂𝑝8 = (0, 13 ), ̂𝑝9 = ( 23 , 0)

and ̂𝑝10 = ( 13 ,
1
3 ) (cf. Figure 2.2, where the dofs are represented by the solid dots).

We can define a modified cubic Lagrange finite element on ̂𝑇 (cf. Figure 2.2) by
replacing ̂𝑣( ̂𝑝4) (resp., ̂𝑣( ̂𝑝7)) with the directional derivative of ̂𝑣 at ̂𝑝2 (resp., ̂𝑝3) in the
direction of #       »̂𝑝2 ̂𝑝3 (resp.,

#       »̂𝑝3 ̂𝑝2). The new dofs are presented by the arrows in Figure 2.2.

̂𝑝1 ̂𝑝2

̂𝑝3

̂𝑝10
̂𝑝8

̂𝑝5

̂𝑝9̂𝑝6

̂𝑝4

̂𝑝7

Figure 2.2. Cubic Lagrange finite element (left) and modified cubic
Lagrange finite element (right)

We can now define the domainΩℎ and its triangulation𝒯ℎ as follows. If the (closed)
triangle ̃𝑇 ∈ 𝒯̃ℎ has at most one vertex on 𝜕Ω, then we include 𝑇 = ̃𝑇 in 𝒯ℎ and take
Φ𝑇 ∶ ̂𝑇 ⟶ 𝑇 to be an affine isomorphism. If ̃𝑇 ∈ 𝒯̃ℎ has two vertices (say 𝑝2 and
𝑝3) on 𝜕Ω, then we replace ̃𝑇 with 𝑇, the image of ̂𝑇 under the cubic polynomial map
Φ𝑇 (cf. Figure 2.3) which is defined below in terms of the dofs for the modified cubic
Lagrange finite element.

Φ𝑇( ̂𝑝𝑖) = 𝑝𝑖 for 𝑖 = 1, 2, 3, 5, 6, 8, 9,(2.1a)

Φ𝑇( ̂𝑝10) = 𝑝10 +
1
18(|p3 − p2|𝒆23 + |p2 − p3|𝒆32),(2.1b)

𝐷Φ𝑇( ̂𝑝2)(p̂3 − p̂2) = |p3 − p2|𝒆23,(2.1c)
𝐷Φ𝑇( ̂𝑝3)(p̂2 − p̂3) = |p2 − p3|𝒆32.(2.1d)

Here the 𝑝𝑖’s are the nodes associated with the standard cubic Lagrange element on ̃𝑇,
𝒆23 (resp., 𝒆32) is the unit tangent of 𝜕Ω at 𝑝2 (resp., 𝑝3) that points towards 𝑝3 (resp.,
𝑝2), and 𝐷Φ𝑇 is the Jacobian matrix of Φ𝑇 .

Remark 2.1. The map defined by (2.1) is associated with a cubic Hermite isoparamet-
ric finite element space (cf. [42]) that is appropriate for error analysis involving the
Sobolev space 𝐻2(Ω).

The domainΩℎ is defined to be the interior of the union of𝑇 ∈ 𝒯ℎ, which is a convex
𝐶1,1 domain for ℎ sufficiently small (which we assumed to be the case from here on).
By construction 𝒯ℎ is automatically a triangulation of Ωℎ. The element 𝑇 ∈ 𝒯ℎ is a
triangle if 𝑇 has at most one vertex on 𝜕Ω, otherwise 𝑇 has one curved edge tangential
to 𝜕Ω at its two vertices on 𝜕Ω.
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̂𝑝1 ̂𝑝2

̂𝑝3

̂𝑝10
̂𝑝8

̂𝑝5

̂𝑝9̂𝑝6
̂𝑇

Φ𝑇

𝑝1 𝑝2

𝑝3

𝑝10

𝑝6 𝑝9

𝑝8

𝑝5

𝒆23

𝒆32

𝑇

Figure 2.3. ̃𝑇 (bounded by the dotted line and the solid lines), 𝑇
(bounded by the curve and the solid lines) and Φ𝑇

2.2. The isoparametric map Φ𝑇 . Let ̃𝑇 ∈ 𝒯̃ℎ have two vertices on 𝜕Ω. The map Φ𝑇
defined by (2.1a)–(2.1d) is identical to the one that appears in [42, Example 6, p.242–
p.244]. (Figure 2.3 is identical to Fig. 5 on page 244 of [42] after relabelling.) The key
to understand the behavior of Φ𝑇 is by comparing it to an affine isomorphism Φ ̃𝑇 ∶
̂𝑇 ⟶ ̃𝑇 defined by the following conditions:

Φ ̃𝑇( ̂𝑝𝑖) = 𝑝𝑖 for 𝑖 = 1, 2, 3, 5, 6, 8, 9,(2.2a)
Φ ̃𝑇( ̂𝑝10) = 𝑝10,(2.2b)

𝐷Φ ̃𝑇( ̂𝑝2)(p̂3 − p̂2) = p3 − p2,(2.2c)
𝐷Φ ̃𝑇( ̂𝑝3)(p̂2 − p̂3) = p2 − p3,(2.2d)

Comparing (2.1a)–(2.1d) and (2.2a)–(2.2d), we see that
Φ𝑇( ̂𝑥) = Φ ̃𝑇( ̂𝑥) + ̂𝜑4( ̂𝑥)[|p3 − p2|𝒆23 − (p3 − p2)]

+ ̂𝜑7( ̂𝑥)[|p2 − p3|𝒆32 − (p2 − p3)](2.3)
+ ( ̂𝜑10( ̂𝑥)/18)(|p3 − p2|𝒆23 + |p2 − p3|𝒆32) ∀ ̂𝑥 ∈ ̂𝑇,

where ̂𝜑4, ̂𝜑7, ̂𝜑10 ∈ 𝑃3( ̂𝑇) are defined by the following conditions:
• ̂𝜑4( ̂𝑝𝑖) = ̂𝜑7( ̂𝑝𝑖) = ̂𝜑10( ̂𝑝𝑖) = 0 for 𝑖 = 1, 2, 3, 5, 6, 8, 9,
• ̂𝜑4( ̂𝑝10) = ̂𝜑7( ̂𝑝10) = 0 and ̂𝜑10( ̂𝑝10) = 1,
• ∇𝜑4( ̂𝑝2) ⋅ (p̂3 − p̂2) = 1 and ∇ ̂𝜑7( ̂𝑝2) ⋅ (p̂3 − p̂2) = ∇ ̂𝜑10( ̂𝑝2) ⋅ (p̂3 − p̂2) = 0,
• ∇ ̂𝜑7( ̂𝑝3) ⋅ (p̂2 − p̂3) = 1 and ∇ ̂𝜑4( ̂𝑝3) ⋅ (p̂2 − p̂3) = ∇ ̂𝜑10( ̂𝑝3) ⋅ (p̂2 − p̂3) = 0,

i.e., ̂𝜑4, ̂𝜑7 and ̂𝜑10 are the nodal basis functions associatedwith the dofs of themodified
cubic Lagrange element (cf. Figure 2.2) represented by the arrow at ̂𝑝2, the arrow at ̂𝑝3
and the solid dot at ̂𝑝10 respectively.
Remark 2.2. The relation in (2.3) is also valid for 𝑇 ∈ 𝒯ℎ that has at most one vertex on
𝜕Ω, provided that we take 𝒆23 (resp., 𝒆32) to be the unit vector in the direction of p3−p2
(resp., p2−p3). In this case all three vectors |p3−p2|𝒆23−(p3−p2), |p2−p3|𝒆32−(p2−p3)
and |p3 − p2|𝒆23 + |p2 − p3|𝒆32 vanish and the discussion below applies to this case
trivially.

Remark 2.3. The relation (2.3) holds for all 𝑥 ∈ ℝ2 since all the functions involved are
polynomials.
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It follows from Taylor’s theorem that, with ℓ = |p3 − p2| = |p2 − p3|,

||𝒆23 − ℓ−1(𝒑3 − 𝒑2)|| = 𝑂(ℓ),(2.4)
||𝒆32 − ℓ−1(𝒑2 − 𝒑3)|| = 𝑂(ℓ),(2.5)

||[𝒆23 − ℓ−1(p3 − p2)] − [𝒆32 − ℓ−1(p2 − p3)]|| = 𝑂(ℓ2),(2.6)

where the hidden constants only depend on 𝜕Ω. Note that (2.4), (2.5) and the triangle
inequality imply

(2.7) |𝒆23 + 𝒆32| = 𝑂(ℓ).

Note also that the maps Φ𝑇 and Φ ̃𝑇 are defined on ℝ2, and in particular, on the
(closed) triangle ̂𝑇† with vertices (1, 1), (−1, 1) and (1, −1) that is used in the construc-
tion of the finite element space in Section 2.5.
Combining (2.3)–(2.5) and (2.7), we find

‖Φ𝑇 − Φ ̃𝑇‖𝐿∞( ̂𝑇†) = 𝑂(ℎ2𝑇̃),(2.8)
‖𝐷Φ𝑇 − 𝐷Φ ̃𝑇‖𝐿∞( ̂𝑇†) = 𝑂(ℎ2𝑇̃),(2.9)

where ℎ𝑇̃ is the diameter of ̃𝑇 and the hidden constants only depend on 𝜕Ω.
Since ̃𝑇 ⊂ 𝑇, the estimate (2.8) immediately implies that

(2.10) ℎ𝑇̃ ≤ ℎ𝑇 ≤ 𝐶ℎ𝑇̃ ,

where ℎ𝑇 is the diameter of 𝑇 and the positive constant 𝐶 depends only on 𝜕Ω.
Note that

(2.11) ‖𝐷Φ ̃𝑇‖𝐿∞(ℝ2) ≈ ℎ𝑇̃ and ‖(𝐷Φ ̃𝑇)−1‖𝐿∞(ℝ2) ≈ ℎ−1𝑇̃ ,

where the hidden constants depend only on the shape regularity of ̃𝑇. Thereforewe can
conclude by the quasi-uniformity of 𝒯̃ℎ, (2.9) and (2.11) that (for ℎ sufficiently small)
the map Φ𝑇 is a 𝐶∞ isomorphism between ̂𝑇† and 𝑇† = Φ𝑇( ̂𝑇†), and that

‖𝐷Φ𝑇‖𝐿∞( ̂𝑇†) ≤ 𝐶ℎ ∀𝑇 ∈ 𝒯ℎ,(2.12)
‖(𝐷Φ𝑇)−1‖𝐿∞(𝑇†) ≤ 𝐶ℎ−1 ∀𝑇 ∈ 𝒯ℎ,(2.13)

where the positive constant 𝐶 is independent of ℎ.
Finally we note that (2.3)–(2.5) and (2.7) also imply

(2.14) |𝐷Φ𝑇 |𝑊1,∞( ̂𝑇†) ≤ 𝐶ℎ2,

and it follows from (2.3), (2.6) and a direct calculation (cf. [42, p.242–p.244] and Ap-
pendix A) that

|𝐷Φ𝑇 |𝑊2,∞( ̂𝑇†) ≤ 𝐶ℎ3,(2.15)
‖ΔΦ𝑇‖𝐿∞( ̂𝑇†) ≤ 𝐶ℎ3.(2.16)

The estimates (2.12)–(2.16) are crucial for the analyses in Sections 3 and 4.
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2.3. The sign of Δ(𝑢 ∘ Φ𝑇). We first note that there exists a bounded linear extension
map 𝔼 ∶ 𝐻4(Ω) ⟶ 𝐻4(ℝ2) (cf. [1]) such that 𝔼𝑣 = 𝑣 on Ω, and we will denote 𝔼𝑢
again by 𝑢. We can also assume that 𝑢 is strictly convex in a neighborhood Ω† of Ω̄.
The sign of Δ(𝑢 ∘ Φ𝑇) is addressed by Lemma 2.4.

Lemma 2.4. The functionΔ(𝑢∘Φ𝑇) is strictly positive on ̂𝑇† for all 𝑇 ∈ 𝒯ℎ provided that
ℎ is sufficiently small.

Proof. In view of (2.8) we have, for sufficiently small ℎ, 𝑇† = Φ𝑇( ̂𝑇†) ⊂ Ω† where 𝑢 is
strictly convex. Let 𝜙𝑇,1 and 𝜙𝑇,2 be the first and second components ofΦ𝑇 respectively.
It follows from the chain rule that

𝐷2(𝑢 ∘ Φ𝑇)( ̂𝑥) = 𝐷Φ𝑇( ̂𝑥)𝑡(𝐷2𝑢)(Φ𝑇( ̂𝑥))𝐷Φ𝑇( ̂𝑥) + 𝜕𝑢
𝜕𝑥1

(Φ𝑇( ̂𝑥))𝐷2𝜙𝑇,1( ̂𝑥)(2.17)

+ 𝜕𝑢
𝜕𝑥2

(Φ𝑇( ̂𝑥))𝐷2𝜙𝑇,2( ̂𝑥) ∀ ̂𝑥 ∈ ̂𝑇†.

The proof is then completed by the observation that

tr[𝐷Φ𝑇( ̂𝑥)𝑡(𝐷2𝑢)(Φ𝑇( ̂𝑥))𝐷Φ𝑇( ̂𝑥)] ≳ ℎ2 ∀𝑥 ∈ ̂𝑇

by (1.5) and (2.13), and

‖tr𝐷2𝜙𝑇,𝑖‖𝐿∞( ̂𝑇†) = ‖Δ(𝜙𝑇,𝑖)‖𝐿∞( ̂𝑇†) = 𝑂(ℎ3) for 𝑖 = 1, 2
by (2.16). □

2.4. The map 𝐹𝑇 . Let ̃𝑇 ∈ 𝒯̃ℎ and 𝑇 be the corresponding element in 𝒯ℎ. The map
(2.18) 𝐹𝑇 = Φ𝑇 ∘ Φ−1

̃𝑇

(cf. (2.1) and (2.2)), which is a diffeomorphism between ̃𝑇 and 𝑇, is a useful tool for
handling functions associated with the isoparametric mesh.
It follows from (2.3)–(2.5), (2.7), (2.10), (2.11) and the chain rule that

(2.19) 𝐷𝐹𝑇( ̃𝑥) = 𝐼 + 𝑅( ̃𝑥) ∀ ̃𝑥 ∈ ̃𝑇,
where

(2.20) the components of 𝑅( ̃𝑥) are quadratic polynomials in ̃𝑥
and

(2.21) ‖𝑅‖𝐿∞( ̃𝑇) ≤ 𝐶ℎ.
(𝑅 = 0 if ̃𝑇 has at most one vertex on 𝜕Ω.)
In particular we have

(2.22) ‖𝐷𝐹𝑇‖𝐿∞( ̃𝑇) ≈ 1, ‖ det 𝐷𝐹𝑇‖𝐿∞( ̃𝑇) ≈ 1 and ‖𝐷𝐹−1𝑇 ‖𝐿∞(𝑇) ≈ 1.
Using (2.12)–(2.15), (2.22) and the chain rule, we find

(2.23) ‖𝜁‖𝐿2(𝑇) ≈ ‖𝜁 ∘ 𝐹𝑇‖𝐿2( ̃𝑇) ∀ 𝜁 ∈ 𝐿2(𝑇),
and

(2.24)
𝑘
∑
𝑗=1

|𝜁|𝐻𝑗(𝑇) ≈
𝑘
∑
𝑗=1

|𝜁 ∘ 𝐹𝑇 |𝐻𝑗( ̃𝑇) ∀ 𝜁 ∈ 𝐻𝑘(𝑇) and 1 ≤ 𝑘 ≤ 4.
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2.5. The finite element space 𝑉ℎ. The finite element space 𝑉ℎ associated with𝒯ℎ is
constructed in terms of enhanced cubic and modified cubic Lagrange finite elements.
The space of shape functions for both elements is given by 𝑃3( ̂𝑇) ⊕ 𝜑2𝑇̂𝑃1( ̂𝑇), where
𝜑𝑇̂ ( ̂𝑥) = ̂𝑥1 ̂𝑥2(1 − ̂𝑥1 − ̂𝑥2) is the cubic bubble function that vanishes on 𝜕 ̂𝑇.
For the enhanced cubic Lagrange element (cf. left of Figure 2.4), the dofs of ̂𝑣 ∈

𝑃3( ̂𝑇) ⊕ 𝜑2𝑇̂𝑃1( ̂𝑇) are given by the 10 dofs of the cubic Lagrange element (cf. left of
Figure 2.2) plus the values of Δ ̂𝑣 at the three vertices of the triangle ̂𝑇† with vertices
(1, 1), (−1, 1) and (1, −1), which are represented by the solid triangles.
Similarly, for the enhancedmodified cubic Lagrange element (cf. right of Figure 2.4),

the dofs of ̂𝑣 ∈ 𝑃3( ̂𝑇)⊕𝜑2𝑇̂𝑃1( ̂𝑇) are given by the 10 dofs of the modified cubic Lagrange
element (cf. right of Figure 2.2) plus the values ofΔ ̂𝑣 at the three vertices of the triangle
̂𝑇† with vertices (1, 1), (−1, 1) and (1, −1), which are represented by the solid triangles.

▴▴

▴

▴▴

▴

Figure 2.4. Enhanced cubic Lagrange element (left) and enhanced
modified cubic Lagrange element (right)

It was proved in [32, Lemma 2.1] that a function ̂𝑣 ∈ 𝑃3( ̂𝑇) ⊕ 𝜑2𝑇̂𝑃1( ̂𝑇) is uniquely
determined by the 13 dofs of the enhanced cubic Lagrange element, and the same argu-
ments show that it is also uniquely determined by the 13 dofs of the enhancedmodified
cubic Lagrange element.

Remark 2.5. Since some of the dofs of the enhanced cubic andmodified cubic Lagrange
finite elements are associated with nodes outside the element domain, their construc-
tions go beyond the classical constructions of finite elements.

Definition 2.6. A function 𝑣 belongs to 𝑉ℎ ⊂ 𝐻1(Ωℎ) if and only if 𝑣 ∘ Φ𝑇 belongs to
𝑃3( ̂𝑇)⊕𝜑2𝑇̂𝑃1( ̂𝑇) for all 𝑇 ∈ 𝒯ℎ. The dofs of 𝑣 on a triangle 𝑇 ∈ 𝒯ℎ correspond to the dofs
of the enhanced cubic Lagrange element (under the pullback by Φ𝑇 ) if 𝑇 has at most
one vertex on 𝜕Ω, and to the dofs of the enhanced modified cubic Lagrange element if
𝑇 has two vertices on 𝜕Ω.
The number of global dofs for 𝑉ℎ is the sum of (i) the number of vertices of 𝒯ℎ,(ii)

2× (the number of edges in 𝒯ℎ), and (iii) 4× (the number of elements in 𝒯ℎ).

3. The discrete problem

We assume that ℎ is sufficiently small so that Φ𝑇 ∶ ̂𝑇† ⟶ 𝑇† = Φ𝑇(𝑇†) is a 𝐶∞

diffeomorphism for all 𝑇 ∈ 𝒯ℎ and the estimates (2.12)–(2.16) are valid.
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3.1. The interpolation operator Πℎ. The operator Πℎ ∶ 𝐻4(ℝ2) ⟶ 𝑉ℎ is defined
by the condition that

(3.1) (Πℎ𝜁) ∘ Φ𝑇 and 𝜁 ∘ Φ𝑇 have identical dofs for all 𝑇 ∈ 𝒯ℎ,

where the dofs are the ones for the enhanced cubic Lagrange finite element if 𝑇 has at
most one vertex on 𝜕Ω and the ones for the enhanced modified cubic Lagrange finite
element if 𝑇 has two vertices on 𝜕Ω.

Remark 3.1. The polynomial mapΦ𝑇 is actually defined onℝ2. Hence 𝜁∘Φ𝑇 is defined
on ℝ2 and the 3 exotic dofs at the vertices of ̂𝑇† are well-defined.

The properties of Πℎ are collected in Lemma 3.2, where 𝐷2
ℎ denotes the piecewise

Hessian operator with respect to𝒯ℎ, ℰ𝑖ℎ is the set of the interior edges of𝒯ℎ, |𝑒| denotes
the length of an edge 𝑒, and J𝜕𝑣/𝜕𝑛K denotes the jump of the normal derivative of 𝑣
across an interior edge. The proof which involves standard arguments based on the
Bramble-Hilbert lemma (cf. [19, 49]) and (2.23)–(2.24) is omitted. Details for similar
estimates can be found in [42, Theorem 1].

Lemma 3.2. The following estimates are valid forΠℎ:

‖𝜁 − Πℎ𝜁‖𝐿2(Ωℎ) + ℎ|𝜁 − Πℎ𝜁|𝐻1(Ωℎ) + ℎ‖𝜁 − Πℎ𝜁‖𝐿∞(Ωℎ)

(3.2)

+ ℎ2‖𝐷2
ℎ(𝜁 − Πℎ𝜁)‖𝐿2(Ωℎ) ≤ 𝐶ℎ4‖𝜁‖𝐻4(ℝ2),

|𝜁 − Πℎ𝜁|𝑊2,∞(𝑇) ≤ 𝐶ℎ‖𝜁‖𝐻4(ℝ2) ∀ 𝑇 ∈ 𝒯ℎ,
(3.3)

∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕(Πℎ𝜁)/𝜕𝑛K‖2𝐿2(𝑒) = ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕(𝜁 − Πℎ𝜁)/𝜕𝑛K‖2𝐿2(𝑒) ≤ 𝐶ℎ4‖𝜁‖2𝐻4(ℝ2),
(3.4)

‖𝐷2
ℎ(Πℎ𝜁)‖2𝐿2(Ωℎ) + max

𝑇∈𝒯ℎ
|Πℎ𝜁|2𝑊1,∞(𝑇) + max

𝑇∈𝒯ℎ
|Πℎ𝜁|2𝑊2,∞(𝑇) ≤ 𝐶‖𝜁‖2𝐻4(ℝ2),

(3.5)

∑
𝑇∈𝒯ℎ

|𝐷2((Πℎ𝜁) ∘ Φ𝑇)|2𝐻2( ̂𝑇) ≤ 𝐶ℎ6‖𝜁‖2𝐻4(ℝ2),
(3.6)

where the positive constant 𝐶 is independent of ℎ.

Remark 3.3. As noted at the beginning of Section 2.3, there exists a bounded linear
extension map 𝔼 ∶ 𝐻4(Ω) ⟶ 𝐻4(ℝ2) such that 𝔼𝑣 = 𝑣 on Ω, and we will denote 𝔼𝑢
(resp., 𝔼𝜙) again by 𝑢 (resp., 𝜙). Therefore Πℎ𝑢 and Πℎ𝜙 are well-defined. We assume
that 𝑢 is strictly convex in a neighborhoodΩ† of Ω̄. The function𝜓 can also be extended
to ℝ2 by the relation det𝐷2𝑢 = 𝜓.

Remark 3.4. It follows from (1.5), (1.6) and (3.3) that (for ℎ ≪ 1)

(𝛼♯/2)|𝜉|2 ≤ 𝜉𝑡𝐷2
ℎ(Πℎ𝑢)(𝑥)𝜉 ≤ (2𝛽♯)|𝜉|2 ∀𝑥 ∈ Ωℎ, 𝜉 ∈ ℝ2.

Remark 3.5. A direct calculation using (1.1a), (3.2), (3.3) and (3.5) yields the estimate

‖ det 𝐷2
ℎ(Πℎ𝑢) − 𝜓‖𝐿2(Ωℎ) = ‖det𝐷2

ℎ(Πℎ𝑢) − det𝐷2
ℎ𝑢‖𝐿2(Ωℎ) ≤ 𝐶ℎ2.



616 S. C. BRENNER, L.-Y. SUNG, Z. TAN, AND H. ZHANG

3.2. Anonlinear least-squares problemwith box constraints. The discrete prob-
lem is to find

(3.7) 𝑢ℎ ∈ argmin𝑣∈𝐿ℎ 𝐽ℎ(𝑣),

where

𝐿ℎ = {𝑣 ∈ 𝑉ℎ ∶ 𝑣 = Πℎ𝜙 on 𝜕Ωℎ and Δ(𝑣 ∘ Φ𝑇) ≥ 0 at the vertices of ̂𝑇†(3.8)
for every 𝑇 ∈ 𝒯ℎ},

and

𝐽ℎ(𝑣) =
ℎ4
2 ‖𝐷

2
ℎ𝑣‖2𝐿2(Ωℎ) +

ℎ−2
2 ∑

𝑇∈𝒯ℎ

|Δ(𝑣 ∘ Φ𝑇)|2𝐻2( ̂𝑇)(3.9)

+ 1
2 ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕𝑣/𝜕𝑛K‖2𝐿2(𝑒) + 1
2‖ det 𝐷

2𝑣 − 𝜓‖2𝐿2(Ωℎ).

Remark 3.6. According to the definition of 𝑉ℎ and Πℎ, the function (Πℎ𝜙) ∘ Φ𝑇 is a
cubic polynomial on the edge ̂𝑝2 ̂𝑝3 of ̂𝑇 that connects ̂𝑝2 and ̂𝑝3 (cf. Figure 2.3) if 𝑇
has two vertices on 𝜕Ω. Moreover, we have

(Πℎ𝜙)(Φ𝑇( ̂𝑝𝑖)) = 𝜙(Φ𝑇( ̂𝑝𝑖)) for 𝑖 = 2, 3,
𝐷((Πℎ𝜙) ∘ Φ𝑇)( ̂𝑝2)(p̂3 − p̂2) = 𝐷(𝜙 ∘ Φ𝑇)( ̂𝑝2)(p̂3 − p̂2) = |p3 − p2|𝐷𝜙(𝑝2)𝒆23,
𝐷((Πℎ𝜙) ∘ Φ𝑇)( ̂𝑝3)(p̂2 − p̂3) = 𝐷(𝜙 ∘ Φ𝑇)( ̂𝑝3)(p̂2 − p̂3) = |p2 − p3|𝐷𝜙(𝑝3)𝒆32,

where 𝒆23 (resp., 𝒆32) is the unit tangent of 𝜕Ω at 𝑝2 (resp., 𝑝3) that points towards
𝑝3 (resp., 𝑝2) (cf. (2.1c)–(2.1d) and Figure 2.3). Therefore (Πℎ𝜙) ∘ Φ𝑇 is the one-
dimensional cubic Hermite interpolant of 𝜙 ∘ Φ𝑇 restricted to the edge ̂𝑝2 ̂𝑝3 and it
is defined solely by the available information of 𝜙 (= 𝑢) on 𝜕Ω. In particular, we have
(3.10) 𝑣 = Πℎ𝜙 = Πℎ𝑢 on 𝜕Ωℎ ∀ 𝑣 ∈ 𝐿ℎ.
Note also that 𝑣 = Πℎ𝜙 is a box equality constraint in the dofs of 𝑉ℎ.

Remark 3.7. According to the definition of 𝑉ℎ, the inequality constraints in the defini-
tion of 𝐿ℎ are also box constraints in the dofs of 𝑉ℎ.

Remark 3.8. The closed convex subset 𝐿ℎ of 𝑉ℎ is nonempty because
(3.11) Πℎ𝑢 ∈ 𝐿ℎ
by Lemma 2.4 and Remark 3.6.

Remark 3.9. The first two terms in (3.9) are regularization terms that are crucial for
the solvability of the discrete problem and for enforcing the elementwise convexity of
the discrete solutions. The third term is a penalty term (cf. [31, 50]) that compensates
for the fact that 𝑉ℎ ⊄ 𝐻2(Ωℎ). The last term is the least-squares term for (1.1a).

We will analyze the least-squares problem defined by (3.7)–(3.9) in terms of the
mesh-dependent semi-norm ‖ ⋅ ‖ℎ defined by
(3.12) ‖𝑣‖2ℎ = ‖𝐷2

ℎ𝑣‖𝐿2(Ωℎ) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕𝑣/𝜕𝑛K‖2𝐿2(𝑒).
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Remark 3.10. Note that ‖ ⋅ ‖ℎ defines a norm on 𝑉ℎ ∩ 𝐻1
0(Ωℎ). Since 𝐿ℎ ⊂ Πℎ𝜙 +

[𝑉ℎ ∩ 𝐻1
0(Ωℎ)], the cost function 𝐽ℎ(𝑣) → ∞ if 𝑣 ∈ 𝐿ℎ and ‖𝑣‖ℎ goes to ∞. Hence

𝐽ℎ ∶ 𝐿ℎ → [0,∞) has a global minimizer.

Remark 3.11. It follows from (3.2), (3.4) and (3.12) that

‖𝑢 − Πℎ𝑢‖ℎ ≤ 𝐶ℎ2,

where the positive constant 𝐶 is independent of ℎ.

3.3. Some a priori bounds. The bounds derived in this section are crucial for the
error analysis in Section 4.
Let 𝑢ℎ satisfy (3.7). It follows from (3.11) that

ℎ4‖𝐷2
ℎ𝑢ℎ‖2𝐿2(Ωℎ) + ℎ−2 ∑

𝑇∈𝒯ℎ

|Δ(𝑢ℎ ∘ Φ𝑇)|2𝐻2( ̂𝑇) + ‖det𝐷2𝑢ℎ − 𝜓‖2𝐿2(Ωℎ)

+ ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕𝑢ℎ/𝜕𝑛K‖2𝐿2(𝑒)
=2𝐽ℎ(𝑢ℎ)(3.13)
≤2𝐽ℎ(Πℎ𝑢)
=ℎ4‖𝐷2

ℎ(Πℎ𝑢)‖2𝐿2(Ωℎ) + ℎ−2 ∑
𝑇∈𝒯ℎ

|Δ((Πℎ𝑢) ∘ Φ𝑇)|2𝐻2( ̂𝑇)

+ ‖det𝐷2(Πℎ𝑢) − 𝜓‖2𝐿2(Ωℎ) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖J𝜕(Πℎ𝑢)/𝜕𝑛K‖2𝐿2(𝑒)
≤𝐶ℎ4,

where we have applied the estimates (3.4)–(3.6) and Remark 3.5.
Consequently, we have

‖𝐷2
ℎ𝑢ℎ‖𝐿2(Ωℎ) ≤ 𝐶,(3.14)

( ∑
𝑇∈𝒯ℎ

|Δ(𝑢ℎ ∘ Φ𝑇)|2𝐻2( ̂𝑇))
1
2 ≤ 𝐶ℎ3,(3.15)

( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖‖J𝜕𝑢ℎ/𝜕𝑛K‖‖2𝐿2(𝑒))
1
2 ≤ 𝐶ℎ2,(3.16)

‖ det 𝐷2
ℎ𝑢ℎ − 𝜓‖𝐿2(Ωℎ) ≤ 𝐶ℎ2.(3.17)

It follows from (3.14), (3.16), the discrete Sobolev inequality in [24] and a Poincaré-
Friedrichs inequality for piecewise 𝐻1 functions in [23] that

(3.18) ‖∇𝑢ℎ‖𝐿∞(Ωℎ) ≤ 𝐶(1 + | ln ℎ|).

Detailed arguments are provided in Appendix B.
The following lemma, which follows easily from (3.14), (3.17) and standard inverse

estimates in the case of simplicial triangulations for polygonal domains, requires a care-
ful treatment in the case of isoparametricmeshes for smooth domains. Its proof is given
in Appendix C.



618 S. C. BRENNER, L.-Y. SUNG, Z. TAN, AND H. ZHANG

Lemma 3.12. There exists a positive constant 𝐶 independent of ℎ such that
‖𝐷2

ℎ𝑢ℎ‖𝐿∞(Ωℎ) ≤ 𝐶ℎ−1,(3.19)
‖ det 𝐷2

ℎ𝑢ℎ − 𝜓‖𝐿∞(Ωℎ) ≤ 𝐶ℎ.(3.20)

4. Convergence analysis

We will develop a priori and a posteriori error estimates by exploiting the element-
wise convexity of the solutions of (3.7) and the stability of 𝐶0 interior penalty methods
for elliptic problems in nondivergence form.

4.1. Elementwise convexity of the discrete solutions. Let 𝑢ℎ ∈ 𝐿ℎ be a solution
of (3.7). For any 𝑇 ∈ 𝒯ℎ, we have the following analog of (2.17):

(𝐷2𝑢̂ℎ)( ̂𝑥) = 𝐷Φ𝑇( ̂𝑥)𝑡(𝐷2𝑢ℎ)(Φ𝑇( ̂𝑥))𝐷Φ𝑇( ̂𝑥) + 𝜕𝑢ℎ
𝜕𝑥1

(Φ𝑇( ̂𝑥))𝐷2𝜙𝑇,1( ̂𝑥)(4.1)

+ 𝜕𝑢ℎ
𝜕𝑥2

(Φ𝑇( ̂𝑥))𝐷2𝜙𝑇,2( ̂𝑥) ∀ ̂𝑥 ∈ ̂𝑇†,

where 𝑢̂ℎ = 𝑢ℎ ∘ Φ𝑇 , and
(4.2) Δ𝑢̂ℎ ≥ 0 at the vertices of ̂𝑇†
by (3.8).
We will treat a polynomial 𝑞 defined on ̂𝑇 as the restriction of a polynomial defined

on ℝ2 (also denoted by 𝑞), and denote by ̃𝐼𝑞 the restriction of 𝐼𝑇̂†𝑞 to ̂𝑇, where 𝐼𝑇̂† is the
𝑃1 nodal interpolation operator associated with the vertices of the larger triangle ̂𝑇† (cf.
Figure 2.4). It follows from (4.2) that
(4.3) ̃𝐼(Δ𝑢̂ℎ) ≥ 0 on ̂𝑇,
and we also have
(4.4) ‖Δ𝑢̂ℎ − ̃𝐼(Δ𝑢̂ℎ)‖𝐿∞( ̂𝑇) ≲ |Δ𝑢̂ℎ|𝐻2( ̂𝑇)≲ ℎ3

by the Bramble-Hilbert lemma (since 𝑃1( ̂𝑇) is invariant under ̃𝐼) and (3.15).
Combining (2.16), (3.18), (4.3) and (4.4), we find

Δ𝑢̂ℎ( ̂𝑥) − 𝜕𝑢ℎ
𝜕𝑥1

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,1( ̂𝑥) − 𝜕𝑢ℎ
𝜕𝑥2

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,2( ̂𝑥)

≥ Δ𝑢̂ℎ( ̂𝑥) − ̃𝐼(Δ𝑢̂ℎ)( ̂𝑥) − 𝜕𝑢ℎ
𝜕𝑥1

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,1( ̂𝑥) − 𝜕𝑢ℎ
𝜕𝑥2

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,2( ̂𝑥)
(4.5)

≥ −‖Δ𝑢̂ℎ − ̃𝐼(Δ𝑢̂ℎ)‖𝐿∞( ̂𝑇) −
𝜕𝑢ℎ
𝜕𝑥1

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,1( ̂𝑥) − 𝜕𝑢ℎ
𝜕𝑥2

(Φ𝑇( ̂𝑥))Δ𝜙𝑇,2( ̂𝑥)

≳ −(1 + | ln ℎ|)ℎ3 ∀ ̂𝑥 ∈ ̂𝑇.
It then follows from (2.13), (4.1) and (4.5) that
(4.6) tr[𝐷2𝑢ℎ(𝑥)] ≳ −(1 + | ln ℎ|)ℎ ∀ 𝑥 ∈ 𝑇.
On the other hand the estimate (3.20) implies

(4.7) det𝐷2
ℎ𝑢ℎ ≥

1
2 min
𝑥∈Ω̄ℎ

𝜓(𝑥) > 0 on 𝑇

for ℎ ≪ 1.
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We conclude from (4.6) and (4.7) that
(4.8) 𝐷2

ℎ𝑢ℎ is positive definite on all 𝑇 ∈ 𝒯ℎ.

4.2. A priori error estimates. It follows from the fundamental theorem of calculus
(cf. [56, Lemma A.1]) that the relation

(4.9) det𝐷2
ℎ(Πℎ𝑢) − det𝐷2

ℎ𝑢ℎ = [∫
1

0
Cof𝐷2

ℎ(𝑡(Πℎ𝑢) + (1 − 𝑡)𝑢ℎ)𝑑𝑡] ∶ 𝐷2
ℎ(Πℎ𝑢 − 𝑢ℎ)

holds in the interior of all the triangles in 𝒯ℎ, where the colon denotes the Frobenius
inner product between matrices.
Since a symmetric 2 × 2 matrix and its cofactor matrix have identical eigenvalues,

Remark 3.4 and (4.8) imply that the matrix-valued function

(4.10) 𝐴ℎ = ∫
1

0
Cof𝐷2

ℎ(𝑡(Πℎ𝑢) + (1 − 𝑡)𝑢ℎ)𝑑𝑡 =
1
2(Cof𝐷

2
ℎ(Πℎ𝑢) + Cof𝐷2

ℎ𝑢ℎ)

satisfies
(4.11) 𝛼|𝜉|2 ≤ 𝜉𝑡𝐴ℎ(𝑥)𝜉 ≤ 𝛽|𝜉|2 ∀ 𝜉 ∈ ℝ2 a.e. on Ωℎ,
where 𝛼 = 𝛼♯/4 and

(4.12) 𝛽 = 1
2(2𝛽♯ + ‖𝐷2

ℎ𝑢ℎ‖𝐿∞(Ωℎ))

are positive constants. In particular 𝐴ℎ belongs to [𝐿∞(Ω)]2×2.
The relation (4.9) indicates that we are in the realm of 𝐶0 interior penalty methods

for elliptic boundary value problems in nondivergence form. The following stability
result, which is the consequence of (4.11) and a discrete Miranda-Talenti estimate, is
related to the ones in [83, 91]. Its derivation, which requires some subtle analysis for
isoparametric finite elements, is provided in Appendix D.

Lemma 4.1. There exists a positive constant 𝐶† independent of ℎ such that

‖𝐷2
ℎ𝑣‖𝐿2(Ωℎ) ≤ ( 𝛼

−1

1 − 𝛿)‖𝐴ℎ ∶ 𝐷
2
ℎ𝑣‖𝐿2(Ωℎ)

(4.13)

+ (
𝐶†
1 − 𝛿)[( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]

for all 𝑣 ∈ 𝑉ℎ ∩ 𝐻1
0(Ωℎ), where

(4.14) 𝛿 = 𝛽 − 𝛼
(𝛼2 + 𝛽2)

1
2
(< 1).

We can now combine the interpolation error estimates in Section 3.1, the a priori
bounds in Section 3.3, the relation (4.9) andLemma4.1 to obtainapriori error estimates
for any solution of (3.7).
We begin with a preliminary error estimate.

Lemma 4.2. Let 𝑢ℎ be a solution of (3.7). There exists a positive constant𝐶 independent
of ℎ such that
(4.15) ‖𝐷2

ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿2(Ωℎ) ≤ 𝐶ℎ.
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Proof. First we note that 𝑣 = Πℎ𝑢 − 𝑢ℎ ∈ 𝑉ℎ ∩ 𝐻1
0(Ωℎ) by (3.10). Moreover, the

definition (4.12) and the estimate (3.19) implies 𝛽 = 𝑂(1/ℎ) and hence, in view of the
definition of 𝛿 in (4.14),
(4.16) (1 − 𝛿)−1 ≤ 𝐶♢ℎ−1

for some positive constant 𝐶♢ independent of ℎ.
According to (3.4), (3.5), Remark 3.5, (3.16)–(3.18), (4.9), Lemma 4.1 and (4.16), we

have
‖𝐷2

ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿2(Ωℎ) ≤ 𝛼−1𝐶♢ℎ−1‖𝐴ℎ ∶ 𝐷2
ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿2(Ωℎ)

+ 𝐶†𝐶♢ℎ−1( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(Πℎ𝑢 − 𝑢ℎ)/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

+ 𝐶†𝐶♢ℎ2‖∇(Πℎ𝑢 − 𝑢ℎ)‖𝐿∞(Ωℎ)

≤ 𝛼−1𝐶♢ℎ−1‖ det 𝐷2
ℎ(Πℎ𝑢) − det𝐷2

ℎ𝑢ℎ‖𝐿2(Ωℎ)(4.17)

+ 2𝐶†𝐶♢ℎ−1( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(Πℎ𝑢)/𝜕𝑛]]‖2𝐿2(𝑒)

+ ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑢ℎ/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

+ 𝐶†𝐶♢ℎ2(‖∇(Πℎ𝑢)‖𝐿∞(Ωℎ) + ‖∇𝑢ℎ‖𝐿∞(Ωℎ))
≤ 𝐶ℎ.

□

It follows from (3.5), (3.18), (4.15) and an inverse estimate (cf. Lemma C.1 in Ap-
pendix C) that

‖𝐷2
ℎ𝑢ℎ‖𝐿∞(Ωℎ) ≤ ‖𝐷2

ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿∞(Ωℎ) + ‖𝐷2
ℎ(Πℎ𝑢)‖𝐿∞(Ωℎ)

≲ ℎ−1‖𝐷2
ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿2(Ωℎ) + ℎ4‖∇(Πℎ𝑢 − 𝑢ℎ)‖𝐿∞(Ωℎ)(4.18)

+ ‖𝐷2
ℎ(Πℎ𝑢)‖𝐿∞(Ωℎ)

≲ 1.
In view of the estimate (4.18) that improves (3.19), the estimate for 𝛽 defined by

(4.12) becomes 𝛽 ≲ 1 and hence 𝛿 defined by (4.14) satisfies
(4.19) (1 − 𝛿)−1 ≤ 𝐶♠
for some positive constant 𝐶♠ independent of ℎ.

Theorem 4.3. Let 𝑢ℎ be a solution of (3.7). There exists a positive constant 𝐶 indepen-
dent of ℎ such that
(4.20) ‖𝑢 − 𝑢ℎ‖ℎ ≤ 𝐶ℎ2.

Proof. We can repeat the arguments in the proof of Lemma 4.2 but with (4.16) replaced
by (4.19) to obtain the estimate
(4.21) ‖𝐷2

ℎ(Πℎ𝑢 − 𝑢ℎ)‖𝐿2(Ωℎ) ≲ ℎ2,
which together with (3.4), (3.12), Remark 3.11 and (3.16) implies (4.20). □
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We can also derive error estimates for lower order norms from (4.21).

Corollary 4.4. Let 𝑢ℎ be a solution of (3.7). There exists a positive constant 𝐶 indepen-
dent of ℎ such that
(4.22) ‖𝑢 − 𝑢ℎ‖𝐿2(Ωℎ) + |𝑢 − 𝑢ℎ|𝐻1(Ωℎ) + ‖𝑢 − 𝑢ℎ‖𝐿∞(Ωℎ) ≤ 𝐶ℎ2.

Proof. First we measure the errors over the convex polygonal domain Ω̃ℎ ⊂ Ωℎ (cf.
Figure 2.1).
It follows from the Poincaré-Friedrichs and Sobolev inequalities for piecewise 𝐻2

functions in [29, 33] that
‖Πℎ𝑢 − 𝑢ℎ‖𝐿2(Ω̃ℎ) + |Πℎ𝑢 − 𝑢ℎ|𝐻1(Ω̃ℎ) + ‖Πℎ𝑢 − 𝑢ℎ‖𝐿∞(Ω̃ℎ)

≲ ( ∑
̃𝑇∈ ̃𝑇ℎ

|𝐷2
ℎ(Πℎ𝑢 − 𝑢ℎ)|2𝐿2( ̃𝑇) + ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(Πℎ𝑢 − 𝑢ℎ)/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

(4.23)

+ ‖Πℎ𝑢 − 𝑢ℎ‖𝐿2(𝜕Ω̃ℎ).
Observe that (3.4), (3.10), (3.16), (4.21) and Lemma B.1 imply

(4.24) ‖∇(Πℎ𝑢 − 𝑢ℎ)‖𝐿∞(Ωℎ) ≲ (1 + | ln ℎ|)ℎ2

and hence
(4.25) ‖Πℎ𝑢 − 𝑢ℎ‖𝐿∞(𝜕Ω̃ℎ) ≲ (1 + | ln ℎ|)ℎ4

because Πℎ𝑢 − 𝑢ℎ = 0 on 𝜕Ωℎ and the gap between 𝜕Ω̃ℎ and 𝜕Ωℎ is 𝑂(ℎ2).
Putting (3.4), (3.16), (4.21), (4.23) and (4.25) together, we have

‖Πℎ𝑢 − 𝑢ℎ‖𝐿2(Ω̃ℎ) + |Πℎ𝑢 − 𝑢ℎ|𝐻1(Ω̃ℎ) + ‖Πℎ𝑢 − 𝑢ℎ‖𝐿∞(Ω̃ℎ) ≲ ℎ2,
which, in view of (4.24), implies
(4.26) ‖Πℎ𝑢 − 𝑢ℎ‖𝐿2(Ωℎ) + |Πℎ𝑢 − 𝑢ℎ|𝐻1(Ωℎ) + ‖Πℎ𝑢 − 𝑢ℎ‖𝐿∞(Ωℎ) ≲ ℎ2.
The estimate (4.22) follows from (3.2) and (4.26). □

Remark 4.5. Numerical results in Section 5 indicate that the error in ‖⋅‖𝐿2(Ωℎ), |⋅|𝐻1(Ωℎ)
and ‖ ⋅ ‖𝐿∞(Ωℎ) are better than 𝑂(ℎ2).

4.3. An a posteriori error estimate. In practice the numerical solution 𝑢̄ℎ of (3.7)
obtained by an optimization algorithm is only an approximate stationary point of the
cost function 𝐽ℎ. It is therefore important to be able to monitor the convergence of 𝑢̄ℎ
by an a posteriori error indicator.
Under the condition that

(4.27) 𝛼̃♭|𝜉|2 ≤ 𝜉𝑡𝐷2
ℎ𝑢̄ℎ𝜉 ≤ ̃𝛽♭|𝜉|2 on all 𝑇 ∈ 𝒯ℎ and for all 𝜉 ∈ ℝ2,

where the positive constants 𝛼̃ and ̃𝛽 are independent of ℎ, we have an analog of (4.9)
that follows from the fundamental theorem of calculus.
(4.28) det𝐷2

ℎ(Πℎ𝑢) − det𝐷2
ℎ𝑢̄ℎ = ̃𝐴ℎ ∶ 𝐷2

ℎ(Πℎ𝑢 − 𝑢̄ℎ) a.e. in Ωℎ,
where

̃𝐴ℎ = ∫
1

0
Cof𝐷2

ℎ(𝑡(Πℎ𝑢) + (1 − 𝑡)𝑢̄ℎ)𝑑𝑡
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satisfies

(4.29) 𝛼̃|𝜉|2 ≤ 𝜉𝑡 ̃𝐴ℎ(𝑥)𝜉 ≤ ̃𝛽|𝜉|2 ∀ 𝜉 ∈ ℝ2 a.e. on Ωℎ,

and the positive constants 𝛼̃ and ̃𝛽 are independent of ℎ.

Remark 4.6. The condition (4.27) can be verified computationally.

We can use (4.28) and (4.29) to derive an a posteriori error estimate for ‖𝑢 − 𝑢̄ℎ‖ℎ.

Theorem 4.7. Under condition (4.27) we have

(4.30) ‖𝑢 − 𝑢̄ℎ‖ℎ ≤ 𝐶(𝜂ℎ(𝑢̄ℎ) + ℎ2),

where

(4.31) 𝜂ℎ(𝑢̄ℎ) = ‖ det𝐷2
ℎ𝑢̄ℎ − 𝜓‖𝐿2(Ωℎ) + ( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑢̄ℎ/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

and the constant 𝐶 is independent of ℎ.

Proof. It follows from (4.29) that we have an analog of (4.13):
(4.32)

‖𝐷2
ℎ𝑣‖𝐿2(Ω) ≤ 𝐶[‖ ̃𝐴ℎ ∶ 𝐷2

ℎ𝑣‖𝐿2(Ωℎ) + ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]

for all 𝑣 ∈ 𝑉ℎ ∩ 𝐻1
0(Ωℎ), where the positive constant 𝐶 is independent of ℎ.

We can then use (1.1a), (3.4), Remark 3.5, (4.28), (4.32) and Lemma B.1 to obtain

‖𝐷2
ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ)

≲ ‖ ̃𝐴ℎ ∶ 𝐷2
ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ) + ℎ3‖∇(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿∞(Ωℎ)

+ ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(Πℎ𝑢 − 𝑢̄ℎ)/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

≲ ‖det𝐷2
ℎ(Πℎ𝑢) − det𝐷2

ℎ𝑢̄ℎ‖𝐿2(Ωℎ) + ℎ3(1 + | ln ℎ|)‖𝐷2
ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ)

+ ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑢̄ℎ/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ2

≲ ‖det𝐷2
ℎ𝑢̄ℎ − 𝜓‖𝐿2(Ωℎ) + ℎ3(1 + | ln ℎ|)‖𝐷2

ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ)

+ ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑢̄ℎ/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ2,

and hence
(4.33)

‖𝐷2
ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ) ≲ ‖det𝐷2

ℎ𝑢̄ℎ − 𝜓‖𝐿2(Ωℎ) + ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑢̄ℎ/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ2.
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Then we have, by (3.4), (3.12), Remark 3.11, (4.31) and (4.33),

‖𝑢 − 𝑢̄ℎ‖ℎ ≤ ‖Πℎ𝑢 − 𝑢̄ℎ‖ℎ + ‖𝑢 − Πℎ𝑢‖ℎ

≲ ‖𝐷2
ℎ(Πℎ𝑢 − 𝑢̄ℎ)‖𝐿2(Ωℎ) + ( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(Πℎ𝑢 − 𝑢̄ℎ)/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ2(4.34)

≤ 𝐶(𝜂ℎ(𝑢̄ℎ) + ℎ2).

□

Therefore we can use 𝜂ℎ(𝑢̄ℎ) to monitor the convergence of 𝑢̄ℎ.

5. Numerical experiments

We have tested our method on two examples. For the first example, the exact so-
lution is known, while the exact solution is unknown for the second example. For
each example, we solve the discrete problem (3.7)–(3.9) by an active set algorithm (cf.
[32, Appendix B] and [65–67]) that produces an approximate stationary point of the
problem. The elementwise convexity of the approximate solutions is checked numeri-
cally by the algorithm in [32, Appendix C].
We takeΩ to be a disc or an elliptical domain in our tests. The boundary of the disc

is given by
(𝑥1 − 1/2)2 + (𝑥2 − 1/2)2 = 1

and the boundary of the elliptical domain is given by

𝑥21 + 4𝑥22 = 1.

In Example 5.1 where the exact solution is known, the relative errors of the approx-
imate solution 𝑢̃ℎ in various norms are defined by

𝑒𝑟2,ℎ =
|𝑢 − 𝑢̃ℎ|𝐻2(Ωℎ)

|𝑢|𝐻2(Ω)
, 𝑒𝑟1,ℎ =

|𝑢 − 𝑢̃ℎ|𝐻1(Ωℎ)
|𝑢|𝐻1(Ω)

, 𝑒𝑟0,ℎ =
‖𝑢 − 𝑢̃ℎ‖𝐿2(Ω)
‖𝑢‖𝐿2(Ω)

and

𝑒𝑟∞,ℎ =
max𝑝∈𝒱ℎ |𝑢(𝑝) − 𝑢̃ℎ(𝑝)|

‖𝑢‖𝐿∞(Ω)
,

where 𝒱ℎ be the set of all the vertices of the decomposition 𝒯ℎ.
All the numerical experiments were carried out on aMacBook Pro laptop computer

with a 2.8GHz Quad-Core Intel Core i7 processor and with 16GB 2133 MHz LPDDR3
memory. We use MATLAB (R2021a v.9.10.0) in our computations.

Example 5.1. Let 𝜓 = (1+ |𝑥|2)𝑒|𝑥|2 and 𝜙 = 𝑒
1
2 |𝑥|

2 . The exact solution of this example
is 𝑢 = 𝑒

1
2 |𝑥|

2 . This example first appeared in [45] where it was posed on the unit square
(0, 1)2. Numerical results for discs and elliptical domains can also be found in [69,79].
The errors of the approximate solution 𝑢̃ℎ on uniform meshes for the disc and the

elliptical domain are presented in Table 5.1 and Table 5.2 respectively. The order of
convergence for 𝑒𝑟2,ℎ is about 2 for both the disc and the elliptical domain, which agrees
with the estimate in Theorem 4.3. The orders of convergence for 𝑒𝑟1,ℎ, 𝑒𝑟0,ℎ and 𝑒𝑟∞,ℎ are
higher than the estimates in Corollary 4.4.
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Table 5.1. Relative errors versus mesh size ℎ and orders of conver-
gence for Example 5.1 on the disc

ℎ 𝑒𝑟2,ℎ order 𝑒𝑟1,ℎ order 𝑒𝑟0,ℎ order 𝑒𝑟∞,ℎ order
1.4142e0 3.1164e-1 – 2.0470e-1 – 6.5945e-2 – 9.9749e-2 –
7.6537e-1 1.5326e-1 1.16 7.7198e-2 1.59 2.9650e-2 1.30 2.2881e-2 2.40
4.2033e-1 5.6636e-2 1.66 1.8173e-2 2.41 6.7873e-3 2.46 6.3419e-3 2.14
2.2193e-1 1.6455e-2 1.94 3.2604e-3 2.69 8.0467e-4 3.34 7.7747e-4 3.29
1.1373e-1 3.7796e-3 2.20 4.4339e-4 2.98 8.2385e-5 3.41 1.2383e-4 2.75
5.7536e-2 7.8618e-4 2.30 5.0280e-5 3.19 7.1523e-6 3.59 1.2404e-5 3.38

Table 5.2. Relative errors versus mesh size ℎ and orders of conver-
gence for Example 5.1 on the elliptical domain

ℎ 𝑒𝑟2,ℎ order 𝑒𝑟1,ℎ order 𝑒𝑟0,ℎ order 𝑒𝑟∞,ℎ order
1.1180e0 4.8288e-1 – 2.4353e-1 – 5.4249e-2 – 1.5862e-2 –
7.2211e-1 1.5912e-1 2.54 5.1224e-2 3.57 5.7344e-3 5.14 8.9989e-3 1.30
3.9243e-1 3.9422e-2 2.29 9.3326e-3 2.79 1.1219e-3 2.68 1.7901e-3 2.65
2.0213e-1 8.6457e-3 2.29 1.1319e-3 3.18 9.6037e-5 3.70 1.4295e-4 3.81
1.0217e-1 1.8046e-3 2.30 1.2064e-4 3.28 7.2136e-6 3.79 1.2103e-5 3.62
5.1316e-2 3.5186e-4 2.37 1.1698e-5 3.39 5.2312e-7 3.81 1.0038e-6 3.62

The residual 𝜂ℎ(𝑢̃ℎ) and the cost 𝐽ℎ(𝑢̃ℎ) are presented in Table 5.3 for the disc and
Table 5.4 for the elliptical domain. The behavior of 𝐽ℎ agreeswith the estimate in (3.13).
The reliability estimate (4.34) can be observed by comparing 𝑒𝑟2,ℎ in Table 5.1 (resp.,
Table 5.2) and 𝜂ℎ(𝑢̃ℎ) in Table 5.3 (resp., Table 5.4).

Table 5.3. Residual, Cost and CPU time for Example 5.1 on the disc
ℎ 1.4142e0 7.6537e-1 4.2033e-1 2.2193e-1 1.1373e-1 5.7536e-2

𝜂ℎ(𝑢̃ℎ) 1.2261e1 4.0633e0 1.0669e0 2.7206e-1 6.9185e-2 1.7192e-2
Order – 1.80 2.23 2.14 2.05 2.04
𝐽ℎ(𝑢̃ℎ) 1.7711e2 2.2890e1 1.9775e0 1.4741e-1 1.0113e-2 6.6290e-4
Order – 3.33 4.09 4.07 4.01 4.00

CPU time (s) 1.4269e1 2.4154e1 1.1641e1 3.7932e1 1.3047e2 7.2279e2

Table 5.4. Residual, Cost and CPU time for Example 5.1 on the el-
liptical domain
ℎ 1.1180e0 7.2211e-1 3.9243e-1 2.0213e-1 1.0217e-1 5.1316e-2

𝜂ℎ(𝑢̃ℎ) 2.2948e0 6.0810e-1 1.3225e-1 2.8456e-2 6.1127e-3 9.3132e-4
Order – 3.04 2.50 2.32 2.25 2.73
𝐽ℎ(𝑢̃ℎ) 4.0546e0 9.0543e-1 8.1358e-2 5.6841e-3 3.6705e-4 2.3870e-5
Order – 3.43 3.95 4.01 4.02 3.97

CPU time (s) 5.3126e1 3.5041e0 6.5679e0 3.1908e1 6.3131e1 5.3018e2
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It is observed from the CPU times in Table 5.3 (resp., Table 5.4) that a good approx-
imate solution, i.e., 𝑒𝑟∞,ℎ ≤ 10−2, can be obtained in under 12 (resp., 7) seconds. The
profiles of the computed solutions on the final meshes are displayed in Figure 5.1

Figure 5.1. The profile of the computed solution on the final mesh
for Example 5.1 on the disc (left) and on the elliptical domain (right)

Example 5.2. Let𝜓 = 1 and𝜙 = 𝑒
1
2 |𝑥|

2 . The exact solution of this example is unknown.
This example is obtained by setting 𝜓 = 1 in Example 5.1. Although the exact solution
is unknown, the convergence of the approximate solutions can be monitored by 𝜂ℎ (cf.
Section 4.3).
We solve this problem on uniform meshes for the elliptical domain. The residual

𝜂ℎ(𝑢̃ℎ), the cost 𝐽ℎ(𝑢̃ℎ) and the CPU times are presented in Table 5.5.
We have verified that all the approximate solutions are elementwise strictly con-

vex. According to our theory, the convergence of 𝜂ℎ(𝑢̃ℎ) to zero observed in Table 5.5
indicates the convergence of 𝑢̃ℎ to the exact solution 𝑢 of (1.1). The profile of the ap-
proximate solution of this example on the final mesh is shown in Figure 5.2.

Table 5.5. Residual, Cost and CPU time for Example 5.2 on the el-
liptical domain
ℎ 1.1180e0 7.2211e-1 3.9243e-1 2.0213e-1 1.0217e-1 5.1316e-2

𝜂ℎ(𝑢̃ℎ) 1.4865e0 4.3033e-1 6.3078e-2 1.0410e-2 2.0413e-3 2.9115e-4
Order – 2.84 3.15 2.72 2.39 2.83
𝐽ℎ(𝑢̃ℎ) 1.6260e0 4.5908e-1 4.3730e-2 3.0832e-3 2.0078e-4 1.3499e-5
Order – 2.89 3.86 4.00 4.00 3.92

CPU time (s) 2.0514e1 2.2355e0 5.9253e0 1.5054e1 7.6981e1 6.2503e2
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Figure 5.2. The profile of the computed solution on the final mesh
for Example 5.2 on the elliptical domain

6. Concluding remarks

We have constructed a nonlinear least-squares finite element method that can cap-
ture smooth convex solutions of the Dirichlet boundary value problem of the Monge-
Ampère equation on two dimensional strictly convex smooth domains. It uses a bubble
enriched isoparametric cubic finite element space with exotic convexity enforcing de-
grees of freedom and is based on the methodology of 𝐶0 interior penalty methods.
We have obtained an optimal 𝑂(ℎ2) a priori error estimate in an 𝐻2-like energy

norm. We have also shown that a simple residual-based a posteriori error indicator
can be used to monitor the convergence of solutions computed by an optimization al-
gorithm.
Classical isoparametric finite element methods are designed for problems in 𝐻1.

However in this paper they are applied to problems in𝐻2 in the spirit of discontinuous
Galerkin methods. Therefore the material in Appendices B–D, which extend several
results for discontinuous Galerkin methods to the isoparametric setting, is also of in-
dependent interest.

Appendix A. Derivations of (2.15) and (2.16)

For the cubic polynomials ̂𝜑4, ̂𝜑7 and ̂𝜑10 that appear in (2.3), we have the explicit
formulas

𝐷2 ̂𝜑4 = ( 4 ̂𝑥2 4 ̂𝑥1 + 2 ̂𝑥2 − 1
4 ̂𝑥1 + 2 ̂𝑥2 − 1 2 ̂𝑥1

) , 𝐷2 ̂𝜑7 = ( 2 ̂𝑥2 2 ̂𝑥1 + 4 ̂𝑥2 − 1
2 ̂𝑥1 + 4 ̂𝑥2 − 1 4 ̂𝑥1

)

and

𝐷2 ̂𝜑10 = ( −54 ̂𝑥2 27 − 54 ̂𝑥1 − 54 ̂𝑥2
27 − 54 ̂𝑥1 − 54 ̂𝑥2 −54 ̂𝑥1

) .
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Let ℓ = |𝒑3 − 𝒑2| = |𝒑2 − 𝒑3|. A direct calculation yields

Δ ̂𝜑4( ̂𝑥)[ℓ𝒆23 − (𝒑3 − 𝒑2)] + Δ ̂𝜑7( ̂𝑥)[ℓ𝒆32 − (𝒑2 − 𝒑3)]) +
Δ ̂𝜑10( ̂𝑥)
18 ℓ(𝒆23 + 𝒆32)

= ̂𝑥2[4(ℓ𝒆23 − (𝒑3 − 𝒑2)) + 2(ℓ𝒆32 − (𝒑2 − 𝒑3)) − 3ℓ(𝒆23 + 𝒆32)]

+ ̂𝑥1[2(ℓ𝒆23 − (𝒑3 − 𝒑2)) + 4(ℓ𝒆32 − (𝒑2 − 𝒑3)) − 3ℓ(𝒆23 + 𝒆32)]
(A.1)

= ̂𝑥2[(ℓ𝒆23 − (𝒑3 − 𝒑2)) − (ℓ𝒆32 − (𝒑2 − 𝒑3))]
+ ̂𝑥1[(ℓ𝒆32 − (𝒑2 − 𝒑3)) − (ℓ𝒆23 − (𝒑3 − 𝒑2))].

The estimate (2.16) follows from (2.3), (2.6) and (A.1).
From the explicit formulas for 𝐷2 ̂𝜑4, 𝐷2 ̂𝜑7 and 𝐷2 ̂𝜑10, we also have

(A.2) 0 = 𝜕3 ̂𝜑4
𝜕 ̂𝑥31

= 𝜕3 ̂𝜑4
𝜕 ̂𝑥32

= 𝜕3 ̂𝜑7
𝜕 ̂𝑥31

= 𝜕3 ̂𝜑7
𝜕 ̂𝑥32

= 𝜕3 ̂𝜑10
𝜕 ̂𝑥31

= 𝜕3 ̂𝜑10
𝜕 ̂𝑥32

,

which implies

(A.3) 𝜕3 ̂𝜑𝑖
𝜕 ̂𝑥1𝜕2 ̂𝑥2

= 𝜕
𝜕 ̂𝑥1

Δ ̂𝜑𝑖( ̂𝑥) and 𝜕3 ̂𝜑𝑖
𝜕 ̂𝑥2𝜕2 ̂𝑥1

= 𝜕
𝜕 ̂𝑥2

Δ ̂𝜑𝑖( ̂𝑥) for 𝑖 = 4, 7, 10.

The estimate (2.15) follows from (2.3), (2.6) and (A.1)–(A.3).

Appendix B. A discrete Sobolev inequality

Lemma B.1. There exists a positive constant 𝐶 independent of ℎ such that

‖∇𝑣‖2𝐿∞(Ωℎ) ≤ 𝐶{(1 + | ln ℎ|)2(‖𝐷2
ℎ𝑣‖2𝐿2(Ωℎ) + ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))

(B.1)

+ (1 + | ln ℎ|) max
𝑝∈𝜕Ωℎ

[𝜕𝑣𝜕𝑠 (𝑝)]
2
} ∀ 𝑣 ∈ 𝑉ℎ.

Proof. Let 𝑣 ∈ 𝑉ℎ be arbitrary and 𝐹𝑇 ∶ ̃𝑇 ⟶ 𝑇 be the diffeomorphism defined by
(2.18). We have, by the chain rule and (2.19),

(B.2) 𝐷(𝑣 ∘ 𝐹𝑇)( ̃𝑥) = 𝐷𝑣(𝐹𝑇( ̃𝑥))𝐷𝐹𝑇( ̃𝑥) = 𝐷𝑣(𝐹𝑇( ̃𝑥))[𝐼 + 𝑅( ̃𝑥)] ∀ ̃𝑥 ∈ ̃𝑇.
Let 𝑣1 = 𝜕𝑣/𝜕𝑥1, 𝑣2 = 𝜕𝑣/𝜕𝑥2, ̃𝑣1 = 𝜕(𝑣 ∘ 𝐹𝑇)/𝜕 ̃𝑥1 and ̃𝑣2 = 𝜕(𝑣 ∘ 𝐹𝑇)/𝜕 ̃𝑥2. Note that

the functions ̃𝑣1 and ̃𝑣2 on Ω̃ℎ are piecewise polynomial functions with respect to 𝒯̃ℎ.
It follows from (2.22)–(2.24), (B.2), and the discrete Sobolev inequality in [24] for

piecewise polynomial functions that
2
∑
𝑖=1

‖𝑣𝑖‖2𝐿∞(Ωℎ) ≈
2
∑
𝑖=1

‖ ̃𝑣𝑖‖2𝐿∞(Ω̃ℎ)

≲ (1 + | ln ℎ|)( ∑
̃𝑇∈𝒯̃ℎ

2
∑
𝑖=1

‖ ̃𝑣𝑖‖2𝐻1( ̃𝑇) + ∑
𝑒∈ℰ𝑖ℎ

2
∑
𝑖=1

|𝑒|−1‖[[ ̃𝑣𝑖]]‖2𝐿2(𝑒))(B.3)

≲ (1+| ln ℎ|)( ∑
𝑇∈𝒯ℎ

2
∑
𝑖=1

(‖𝑣𝑖‖2𝐿2(𝑇)+|𝑣𝑖|2𝐻1(𝑇))+ ∑
𝑒∈ℰ𝑖ℎ

2
∑
𝑖=1

|𝑒|−1‖[[ ̃𝑣𝑖]]‖2𝐿2(𝑒)).
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Observe that (2.21) and (B.2) imply
2
∑
𝑖=1

|𝑒|−1‖[[ ̃𝑣𝑖]]‖2𝐿2(𝑒) ≲
2
∑
𝑖=1

[|𝑒|−1‖[[𝑣𝑖]]‖2𝐿2(𝑒) + ℎ(‖𝑣+𝑖 ‖2𝐿2(𝑒) + ‖𝑣−𝑖 ‖2𝐿2(𝑒))],(B.4)

where 𝑣±𝑖 is the restriction of 𝑣𝑖 to 𝑇±, the two elements in 𝒯ℎ that share the common
edge 𝑒 ∈ ℰ𝑖ℎ, and it follows from the trace theorem with scaling that

ℎ(‖𝑣+𝑖 ‖2𝐿2(𝑒) + ‖𝑣−𝑖 ‖2𝐿2(𝑒)) ≲ ‖𝑣+𝑖 ‖2𝐿2(𝑇+) + ‖𝑣−𝑖 ‖2𝐿2(𝑇−)(B.5)
+ ℎ2(|𝑣𝑖|2𝐻1(𝑇+) + |𝑣𝑖|2𝐻1(𝑇−)).

Putting (B.3)–(B.5) together, we have

2
∑
𝑖=1

‖𝑣𝑖‖2𝐿∞(Ωℎ) ≲ (1 + | ln ℎ|)
2
∑
𝑖=1

(‖𝑣𝑖‖2𝐿2(Ωℎ) + ∑
𝑇∈𝒯ℎ

|𝑣𝑖|2𝐻1(𝑇) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝑣𝑖]]‖2𝐿2(𝑒)).

(B.6)

Let ̄𝑣𝑖 be the average of 𝑣𝑖 overΩℎ. It follows from a Poincaré-Friedrichs inequality
for piecewise 𝐻1 functions (cf. [23]) that

(B.7) ‖𝑣𝑖 − ̄𝑣𝑖‖2𝐿2(Ωℎ) ≲ ∑
𝑇∈𝒯ℎ

|𝑣𝑖|2𝐻1(𝑇) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝑣𝑖]]‖2𝐿2(𝑒).

Let 𝑝𝑖 ∈ 𝜕Ωℎ such that (𝜕𝑣/𝜕𝑠)(𝑝𝑖) = (𝜕𝑣/𝜕𝑥𝑖)(𝑝𝑖) = 𝑣𝑖(𝑝𝑖). We have
2
∑
𝑖=1

‖ ̄𝑣𝑖‖2𝐿2(Ωℎ) ≲
2
∑
𝑖=1

‖ ̄𝑣𝑖‖2𝐿∞(Ωℎ)

≲
2
∑
𝑖=1

(‖𝑣𝑖(𝑝𝑖) − ̄𝑣𝑖‖2𝐿∞(Ωℎ) + |𝑣𝑖(𝑝𝑖)|2)(B.8)

≤
2
∑
𝑖=1

‖𝑣𝑖 − ̄𝑣𝑖‖2𝐿∞(Ωℎ) +
2
∑
𝑖=1

|𝑣𝑖(𝑝𝑖)|2

≲ (1 + | ln ℎ|)
2
∑
𝑖=1

( ∑
𝑇∈𝒯ℎ

|𝑣𝑖|2𝐻1(𝑇) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝑣𝑖]]‖2𝐿2(𝑒)) +
2
∑
𝑖=1

|𝑣𝑖(𝑝𝑖)|2

by (B.6) (applied to 𝑣𝑖 − ̄𝑣𝑖 = 𝜕𝑤/𝜕𝑥𝑖, where the function 𝑤(𝑥) = 𝑣(𝑥) − ̄𝑣1𝑥1 − ̄𝑣2𝑥2
belongs to 𝑉ℎ) and (B.7).
Combining (B.6)–(B.8), we arrive at the estimate

2
∑
𝑖=1

‖𝑣𝑖‖2𝐿∞(Ωℎ) ≲ (1 + | ln ℎ|)2
2
∑
𝑖=1

( ∑
𝑇∈𝒯ℎ

|𝑣𝑖|2𝐻1(𝑇) + ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝑣𝑖]]‖2𝐿2(𝑒))

+ (1 + | ln ℎ|)
2
∑
𝑖=1

|𝑣𝑖(𝑝𝑖)|2

that implies (B.1). □

The estimate (3.18) follows from (3.14), (3.16), Remark 3.6 and (B.1).
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Appendix C. Derivations of lemma 3.12

The inverse estimate ‖𝐷2𝑣‖𝐿∞(𝑇) ≤ 𝐶ℎ−1‖𝐷2𝑣‖𝐿2(𝑇) is not valid for 𝑣 ∈ 𝑉ℎ if 𝑇 ∈ 𝒯ℎ
is a triangle that has a curved edge because 𝐷2𝑣 is in general not a polynomial on 𝑇.
But we can remedy this by the observation that it behaves like a polynomial up to a
perturbation involving ∇𝑣.

Lemma C.1. There exists a positive constant 𝐶 independent of ℎ such that

(C.1) ‖𝐷2𝑣‖𝐿∞(𝑇) ≤ 𝐶(ℎ−1‖𝐷2𝑣‖𝐿2(𝑇) + ℎ4‖∇𝑣‖𝐿∞(𝑇)) ∀ 𝑣 ∈ 𝑉ℎ, 𝑇 ∈ 𝒯ℎ.

Proof. Let 𝑣 ∈ 𝑉ℎ and 𝑇 ∈ 𝒯ℎ be arbitrary. We have the following analog of (2.17):

𝐷2(𝑣 ∘ 𝐹𝑇)( ̃𝑥) = 𝐷𝐹𝑇( ̃𝑥)𝑡(𝐷2𝑣)(𝐹𝑇( ̃𝑥))𝐷𝐹𝑇( ̃𝑥) + 𝜕𝑣
𝜕𝑥1

(𝐹𝑇( ̃𝑥))𝐷2 ̃𝜙𝑇,1( ̃𝑥)(C.2)

+ 𝜕𝑣
𝜕𝑥2

(𝐹𝑇( ̃𝑥))𝐷2 ̃𝜙𝑇,2( ̃𝑥) ∀ ̃𝑥 ∈ ̃𝑇,

where ̃𝜙𝑇,1 and ̃𝜙𝑇,2 are the first and second components of 𝐹𝑇 respectively.
Note that

the components of 𝐷2(𝑣 ∘ 𝐹𝑇)( ̃𝑥), 𝐷(𝑣 ∘ 𝐹𝑇)( ̃𝑥), 𝐷𝐹𝑇( ̃𝑥), 𝐷2 ̃𝜙𝑇,1( ̃𝑥) and(C.3)
𝐷2 ̃𝜙𝑇,2( ̃𝑥) are polynomials in ̃𝑥,

and

(C.4) ‖𝐷2 ̃𝜙𝑇,1‖𝐿∞( ̃𝑇) + ‖𝐷2 ̃𝜙𝑇,2‖𝐿∞( ̃𝑇) ≲ 1

by (2.10), (2.11) and (2.14).
We also have, by (B.2),

(C.5) (𝐷𝑣)(𝐹𝑇( ̃𝑥))[𝐼 − 𝑅4( ̃𝑥)] = 𝐷(𝑣 ∘ 𝐹𝑇)( ̃𝑥)[𝐼 − 𝑅( ̃𝑥) + 𝑅2( ̃𝑥) − 𝑅3( ̃𝑥)] ∀ ̃𝑥 ∈ ̃𝑇.

It follows from (2.21) and (C.5) that

(C.6) (𝐷𝑣)(𝐹𝑇( ̃𝑥)) = 𝐷(𝑣 ∘ 𝐹𝑇)( ̃𝑥)[𝐼 − 𝑅( ̃𝑥) + 𝑅2( ̃𝑥) − 𝑅3( ̃𝑥)] + 𝑆( ̃𝑥),

where

(C.7) ‖𝑆‖𝐿∞( ̃𝑇) ≲ ℎ4‖∇𝑣‖𝐿∞(𝑇).

Combining (2.19)–(2.21), Definition 2.6, (C.2)–(C.4), (C.6) and (C.7), we arrive at
the following relation

(C.8) 𝐷𝐹𝑇( ̃𝑥)𝑡(𝐷2𝑣)(𝐹𝑇( ̃𝑥))𝐷𝐹𝑇( ̃𝑥) = 𝐻( ̃𝑥) + 𝑍( ̃𝑥) ∀ ̃𝑥 ∈ ̃𝑇,

where

(C.9) the components of 𝐻( ̃𝑥) are polynomials in ̃𝑥 of total degree ≤ 13

and

(C.10) ‖𝑍‖𝐿∞( ̃𝑇) ≲ ℎ4‖∇𝑣‖𝐿∞(𝑇).

It follows from (2.22), (2.23) and (C.8) that

‖𝐻‖𝐿2( ̃𝑇) ≲ ‖(𝐷2𝑣) ∘ 𝐹𝑇‖𝐿2( ̃𝑇) + ‖𝑍‖𝐿2( ̃𝑇) ≲ ‖𝐷2𝑣‖𝐿2(𝑇) + ‖𝑍‖𝐿2( ̃𝑇),
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which together with (C.10) and a standard inverse estimate (cf. [30, 41]) implies

‖𝐷2𝑣‖𝐿∞(𝑇) = ‖(𝐷2𝑣) ∘ 𝐹𝑇‖𝐿∞( ̃𝑇)
≲ ‖𝐻 + 𝑍‖𝐿∞( ̃𝑇)
≲ ‖𝐻‖𝐿∞( ̃𝑇) + ‖𝑍‖𝐿∞( ̃𝑇)

≲ ℎ−1‖𝐻‖𝐿2( ̃𝑇) + ‖𝑍‖𝐿∞( ̃𝑇)

≲ ℎ−1‖𝐷2𝑣‖𝐿2(𝑇) + ‖𝑍‖𝐿∞( ̃𝑇) ≲ ℎ−1‖𝐷2𝑣‖𝐿2(𝑇) + ℎ4‖∇𝑣‖𝐿∞(𝑇)
which is the estimate (C.1). □

The estimate (3.19) follows immediately from (3.14), (3.18) and Lemma C.1.
Now we take 𝑣 = 𝑢ℎ in (C.8) and conclude that

(C.11) 𝐷𝐹𝑇( ̃𝑥)𝑡[(𝐷2𝑢ℎ)(𝐹𝑇( ̃𝑥)) + 𝑄( ̃𝑥)]𝐷𝐹𝑇( ̃𝑥) = 𝐻( ̃𝑥),

where
𝑄( ̃𝑥) = −𝐷𝐹𝑇( ̃𝑥)−𝑡𝑍( ̃𝑥)𝐷𝐹𝑇( ̃𝑥)−1

satisfies

(C.12) ‖𝑄‖𝐿∞( ̃𝑇) ≲ ℎ3

by (3.18) and (C.10).
Note that

(C.13) ‖ det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇 + 𝑄] − det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇]‖𝐿∞( ̃𝑇) ≲ ℎ2

by (3.19) and (C.12).
Since 𝜓 ∈ 𝐻2(ℝ2) (cf. Remark 3.3), we can use (2.24) to show that the 𝑃1 interpolant

𝜓 ̃𝑇 of 𝜓 ∘ 𝐹𝑇 on ̃𝑇 satisfies

‖𝜓 ∘ 𝐹𝑇 − 𝜓 ̃𝑇‖𝐿∞( ̃𝑇) ≲ ℎ.(C.14)

It then follows from (2.22), (2.23), (3.17), (C.9), (C.11), (C.13), (C.14) and a standard
inverse estimate that

‖ det𝐻 − (det 𝐷𝐹𝑇)2𝜓 ̃𝑇‖𝐿∞( ̃𝑇) ≲ ℎ−1‖ det𝐻 − (det 𝐷𝐹𝑇)2𝜓 ̃𝑇‖𝐿2( ̃𝑇)

≲ ℎ−1‖ det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇 + 𝑄] − 𝜓 ̃𝑇‖𝐿2( ̃𝑇)

≲ ℎ−1‖ det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇] − 𝜓 ∘ 𝐹𝑇‖𝐿2( ̃𝑇) + ℎ(C.15)
≲ ℎ−1‖ det 𝐷2𝑢ℎ − 𝜓‖𝐿2(𝑇) + ℎ
≲ ℎ.

Finally we arrive at the estimate (3.20)

‖ det 𝐷2𝑢ℎ − 𝜓‖𝐿∞(𝑇) = ‖det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇] − 𝜓 ∘ 𝐹𝑇‖𝐿∞( ̃𝑇)

≲ ‖det [(𝐷2𝑢ℎ) ∘ 𝐹𝑇 + 𝑄] − 𝜓 ̃𝑇‖𝐿∞( ̃𝑇) + ℎ
≲ ‖det𝐻 − (det 𝐷𝐹𝑇)2𝜓 ̃𝑇‖𝐿∞( ̃𝑇) + ℎ
≲ ℎ

by (2.22), (C.11) and (C.13)–(C.15).
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Appendix D. Derivation of lemma 4.1

There are two ingredients in the derivation of Lemma 4.1. The first one is a finite
element space𝑊ℎ ⊂ 𝐻1

0(Ωℎ) associated with the isoparametric mesh 𝒯ℎ. The second
one is a linear map 𝐸ℎ that connects 𝑉ℎ ∩ 𝐻1

0(Ωℎ) and𝑊ℎ.

The finite element space𝑊ℎ. A function 𝑤 ∈ 𝐻1
0(Ωℎ) belongs to𝑊ℎ if and only

if (i) 𝑤 ∘ Φ𝑇 belongs to 𝑃3( ̂𝑇) ⊕ 𝜑2𝑇̂𝑃1( ̂𝑇) for all 𝑇 ∈ 𝒯ℎ, where Φ𝑇 ∶ ̂𝑇 ⟶ 𝑇 is the
cubic isoparametric map; and (ii) 𝑤 is continuous up to the first order derivatives at
the vertices of 𝒯ℎ. The 13 dofs of 𝑤 ∘ Φ𝑇 on the reference simples ̂𝑇 are given by the
values of its derivatives up to order 1 at the vertices of ̂𝑇, its value at the center 𝑐 ̂𝑇 of ̂𝑇
and the values of its Laplacian at the vertices of ̂𝑇† (cf. Section 2.5).
Since the elements in 𝒯ℎ are convex and piecewise smooth, we can apply [63, The-

orem 3.1.1.2] to obtain the following estimate for any function 𝑤 ∈ 𝐻1
0(Ωℎ) that is

piecewise smooth with respect to 𝒯ℎ.

∑
𝑇∈𝒯ℎ

[∫
𝑇
|Δ𝑤|2𝑑𝑥 − |𝑤|2𝐻2(𝑇)](D.1)

≥ ∑
𝑇∈𝒯ℎ

[ ∑
𝑒∈ℰ𝑖(𝑇)

∫
𝑒
{ 𝜕𝜕𝑠(

𝜕𝑤
𝜕𝑛

𝜕𝑤
𝜕𝑠 ) − 2𝜕𝑤𝜕𝑠

𝜕2𝑤
𝜕𝑠𝜕𝑛}𝑑𝑠],

where ℰ𝑖(𝑇) are the edges of 𝑇 interior to Ωℎ and 𝜕/𝜕𝑠 (resp., 𝜕/𝜕𝑛) denotes the coun-
terclockwise tangential (resp., outward normal) differentiation along 𝜕𝑇.
The continuity up to first order derivatives at the vertices of 𝒯ℎ for 𝑤 ∈ 𝑊ℎ implies

that

(D.2) ∑
𝑇∈𝒯ℎ

[ ∑
𝑒∈ℰ𝑖(𝑇)

∫
𝑒

𝜕
𝜕𝑠(

𝜕𝑤
𝜕𝑛

𝜕𝑤
𝜕𝑠 )𝑑𝑠] = 0 ∀𝑤 ∈ 𝑊ℎ,

and hence also
(D.3)
∑

𝑇∈𝒯ℎ

[ ∑
𝑒∈ℰ𝑖(𝑇)

∫
𝑒
( − 2𝜕𝑤𝜕𝑠

𝜕2𝑤
𝜕𝑠𝜕𝑛)𝑑𝑠] = ∑

𝑇∈𝒯ℎ

[ ∑
𝑒∈ℰ𝑖(𝑇)

∫
𝑒
(2𝜕

2𝑤
𝜕𝑠2

𝜕𝑤
𝜕𝑛 )𝑑𝑠] ∀𝑤 ∈ 𝑊ℎ.

It follows from the Cauchy-Schwarz inequality that

||| ∑
𝑇∈𝒯ℎ

[ ∑
𝑒∈ℰ𝑖(𝑇)

∫
𝑒
(2𝜕

2𝑤
𝜕𝑠2

𝜕𝑤
𝜕𝑛 )𝑑𝑠]

|||

(D.4)

≤ 𝐶♯( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|‖𝜕2𝑤/𝜕𝑠2‖2𝐿2(𝑒))
1
2 ( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑤/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 ∀𝑤 ∈ 𝑊ℎ,

where the positive constant 𝐶♯ only depends on the shape regularity of 𝒯ℎ.
Putting (D.1)–(D.4) together we find

∑
𝑇∈𝒯ℎ

|𝑤|2𝐻2(𝑇) ≤ 𝐶♯( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|‖𝜕2𝑤/𝜕𝑠2‖2𝐿2(𝑒))
1
2 ( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑤/𝜕𝑛]]‖2𝐿2(𝑒))
1
2(D.5)

+ ∑
𝑇∈𝒯ℎ

‖Δ𝑤‖2𝐿2(𝑇) ∀𝑤 ∈ 𝑊ℎ.
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Let 𝑒 ∈ ℰ𝑖ℎ be an edge of 𝑇 ∈ 𝒯ℎ and 𝐹𝑇 ∶ ̃𝑇 ⟶ 𝑇 be the cubic polynomial map
defined by (2.18), where ̃𝑇 ∈ 𝒯̃ℎ shares the same vertices with 𝑇. The map

𝑣 ↦ |𝑣 ∘ 𝐹−1𝑇 |𝐻2(𝑇)

defines a semi-norm on 𝑃3( ̃𝑇) ⊕ 𝜑2𝑇̃𝑃1( ̃𝑇) whose kernel is 𝐾 = {𝑣 ∈ 𝑃3( ̃𝑇) ⊕ 𝜑2𝑇̃𝑃1( ̃𝑇) ∶
𝑣 ∘ 𝐹−1𝑇 is linear} = the three dimensional subspace of 𝑃3( ̃𝑇) ⊕ 𝜑2𝑇̃𝑃1( ̃𝑇) spanned by
the constant function 1 and the two components of 𝐹𝑇 . Since the restrictions of these
functions to 𝑒 are polynomials of degree ≤ 1, we can deduce from the equivalence of
norms on [𝑃3( ̃𝑇) ⊕ 𝜑2𝑇̃𝑃1( ̃𝑇)]/𝐾 and scaling that

(D.6) |𝑒|
1
2 ‖𝜕2𝑣/𝜕𝑠2‖𝐿2(𝑒) ≲ |𝑣 ∘ 𝐹−1𝑇 |𝐻2(𝑇) ∀ 𝑣 ∈ 𝑃3( ̃𝑇) ⊕ 𝜑2𝑇̃𝑃1( ̃𝑇).

Letting 𝑣 = 𝑤 ∘ 𝐹𝑇 in (D.6) for 𝑤 ∈ 𝑊ℎ, we arrive at the estimate

|𝑒|
1
2 ‖𝜕2𝑤/𝜕𝑠2‖𝐿2(𝑒) ≲ |𝑤|𝐻2(𝑇)

and hence

(D.7) ∑
𝑒∈ℰ𝑖ℎ

|𝑒|‖𝜕2𝑤/𝜕𝑠2‖2𝐿2(𝑒) ≲ ∑
𝑇∈𝒯ℎ

|𝑤|2𝐻2(𝑇) ∀𝑤 ∈ 𝑊ℎ.

Combining (D.5) and (D.7), we have

∑
𝑇∈𝒯ℎ

|𝑤|2𝐻2(𝑇) ≤ 𝐶♭( ∑
𝑇∈𝒯ℎ

|𝑤|2𝐻2(𝑇))
1
2 ( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑤/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

+ ( ∑
𝑇∈𝒯ℎ

‖Δ𝑤‖2𝐿2(𝑇))
1
2 ( ∑

𝑇∈𝒯ℎ

|𝑤|2𝐻2(𝑇))
1
2

and hence

(D.8) ‖𝐷2
ℎ𝑤‖𝐿2(Ωℎ) ≤ ‖Δℎ𝑤‖𝐿2(Ωℎ) + 𝐶♭( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑤/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 ∀𝑤 ∈ 𝑊ℎ,

where Δℎ denotes the piecewise Laplacian operator with respect to 𝒯ℎ.
The estimate (D.8) is a discrete version of the Miranda-Talenti estimate [77,92] that

plays an important role in the theory of second order elliptic problems in nondiver-
gence form. Below we will derive an analog of (D.8) for functions in 𝑉ℎ ∩ 𝐻1

0(Ωℎ)
through a map 𝐸ℎ that connects 𝑉ℎ ∩ 𝐻1

0(Ωℎ) and𝑊ℎ.

The map 𝐸ℎ. The map 𝐸ℎ ∶ 𝑉ℎ ∩ 𝐻1
0(Ωℎ)⟶𝑊ℎ is given by

𝐸ℎ𝑣 = 𝑤,

where 𝑤 ∈ 𝑊ℎ is defined by the conditions that (i) 𝑣 ∘ Φ𝑇 − 𝑤 ∘ Φ𝑇 ∈ 𝑃3( ̂𝑇), (ii) the
dofs of 𝑤 at a vertex 𝑝 of 𝒯ℎ interior to Ω are the averages of the corresponding dofs of
𝑣 at 𝑝 on the elements in 𝒯ℎ that share 𝑝 as a common vertex; (iii) the dofs of 𝑤 at a
vertex 𝑝 of 𝒯ℎ on 𝜕Ωℎ are the averages of the corresponding dofs of 𝑣 at 𝑝 on the two
curved elements that share 𝑝 as a common vertex; and (iv) 𝑤 = 𝑣 at Φ𝑇(𝑐 ̂𝑇) for all
𝑇 ∈ 𝒯ℎ, where 𝑐 ̂𝑇 is the center of the reference simplex ̂𝑇. Note that 𝑣 = 0 on 𝜕Ωℎ and
condition (ii) imply 𝑤 = 0 on 𝜕Ωℎ.
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Let 𝑣 ∈ 𝑉ℎ and 𝑇 ∈ 𝒯ℎ be arbitrary. It follows from (by now) standard arguments
(cf. [20–22, 25]), (2.10) and (2.22) that

‖(𝑣 − 𝐸ℎ𝑣) ∘ 𝐹𝑇‖2𝐿2( ̃𝑇) ≲ ℎ4̃𝑇 ∑
𝑝∈𝒱𝑇̃

||∇(𝑣 ∘ 𝐹𝑇)(𝑝) − ∇((𝐸ℎ𝑣) ∘ 𝐹𝑇)(𝑝)||
2(D.9)

≲ ℎ4𝑇 ∑
𝑝∈𝒱𝑇̃

||(∇𝑣)(𝑝) − ∇(𝐸ℎ𝑣)(𝑝)||
2,

where 𝒱 ̃𝑇 is the set of the three vertices of ̃𝑇.
Let 𝑝 ∈ 𝒱 ̃𝑇 . We separate the estimate for the right-hand side of (D.9) into two cases.

In the first case, all of the elements in𝒯ℎ that share 𝑝 as a common vertex are triangles
that have at most one vertex on 𝜕Ω. In this case, we have

(D.10) ||(∇𝑣)(𝑝) − ∇(𝐸ℎ𝑣)(𝑝)||
2 ≲ ∑

𝑒∈ℰ𝑝
|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒)

by a standard inverse estimate, where ℰ𝑝 is the set of the edges in ℰ𝑖ℎ that share 𝑝 as a
common vertex. Note that we can apply the inverse estimate because 𝑣 is a polynomial
on every triangle that shares 𝑝 as a common vertex.
In the second case, at least one of the triangles that share 𝑝 as a common vertex has

a curved edge. In this case we have

(D.11) ||(∇𝑣)(𝑝) − ∇(𝐸ℎ𝑣)(𝑝)||
2 ≲ ∑

𝑒∈ℰ𝑝
|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒) + ℎ8𝑇 ∑

𝑇′∈𝒯𝑝
‖∇𝑣‖2𝐿∞(𝑇′)

by (C.6) and (C.7), where 𝒯𝑝 is the set of the elements in 𝒯ℎ that share 𝑝 as a common
vertex.
Combining (D.9)–(D.11), we find

(D.12)

( ∑
̃𝑇∈𝒯̃ℎ

‖(𝑣 − 𝐸ℎ𝑣) ∘ 𝐹𝑇‖2𝐿2( ̃𝑇))
1
2 ≲ ℎ2[( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)],

where we have also used the observation that the number of elements in 𝒯ℎ is 𝑂(ℎ−2).
Finally it follows from and standard inverse estimates that

‖𝐷2
ℎ(𝑣 − 𝐸ℎ𝑣)‖𝐿2(Ωℎ) ≲ ( ∑

̃𝑇∈𝒯̃ℎ

[‖(𝑣 − 𝐸ℎ𝑣) ∘ 𝐹𝑇‖2𝐿2( ̃𝑇) + |(𝑣 − 𝐸ℎ𝑣) ∘ 𝐹𝑇 |2𝐻1( ̃𝑇)

+ |(𝑣 − 𝐸ℎ𝑣) ∘ 𝐹𝑇 |2𝐻2( ̃𝑇)])
1
2(D.13)

≲ ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ),

where the hidden constant only depends on the shape regularity of 𝒯ℎ.
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Similarly it follows from the trace theorem with scaling, (2.24), (D.12) and standard
inverse estimates that

( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕(𝑣 − 𝐸ℎ𝑣)/𝜕𝑛]]‖2𝐿2(𝑒))
1
2

≲ (ℎ−2‖∇(𝑣 − 𝐸ℎ𝑣)‖2𝐿2(Ωℎ) + ‖𝐷2
ℎ(𝑣 − 𝐸ℎ𝑣)‖2𝐿2(Ωℎ))

1
2(D.14)

≲ ( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ).

We are now ready to establish a discrete version of the Miranda-Talenti estimate for
functions in 𝑉ℎ.

Lemma D.1. There exists a positive constant 𝐶† independent of ℎ such that

‖𝐷2
ℎ𝑣‖𝐿2(Ωℎ) ≤ ‖Δℎ𝑣‖𝐿2(Ωℎ) + 𝐶†[( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]

for all 𝑣 ∈ 𝑉ℎ ∩ 𝐻1
0(Ωℎ).

Proof. This is a simple consequence of (D.8), (D.13) and (D.14):

‖𝐷2
ℎ𝑣‖𝐿2(Ωℎ) ≤ ‖𝐷2

ℎ(𝐸ℎ𝑣)‖𝐿2(Ωℎ) + ‖𝐷2
ℎ(𝑣 − 𝐸ℎ𝑣)‖𝐿2(Ωℎ)

≤ ‖Δℎ(𝐸ℎ𝑣)‖𝐿2(Ωℎ) + 𝐶✠[( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]

≤ ‖Δℎ𝑣‖𝐿2(Ωℎ) + 𝐶†[( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)].

□

Derivation of Lemma 4.1. We follow the treatment of second order elliptic equations
in nondivergence form (cf. [38, 43, 76, 91]) by introducing the function

𝛾ℎ(𝑥) =
𝐴ℎ(𝑥) ∶ 𝐼

𝐴ℎ(𝑥) ∶ 𝐴ℎ(𝑥)
,

where 𝐼 is the 2 × 2 identity matrix.
We have (cf. for example [32, Appendix A])

(D.15) 0 ≤ 𝛾ℎ(𝑥) ≤
1
𝛼 a.e. in Ωℎ,

and

(D.16) |𝛾ℎ(𝑥)𝐴ℎ(𝑥) − 𝐼| ≤ 𝛿 = 𝛽 − 𝛼
(𝛼2 + 𝛽2)

1
2
< 1 a.e. in Ωℎ,

where 𝛼 > 0 and 𝛽 ≥ 𝛼 are the constants in (4.11).
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Let 𝑣 ∈ 𝑉ℎ ∩ 𝐻1
0(Ωℎ) be arbitrary. It follows from Lemma D.1, (D.16), and the

Cauchy-Schwarz inequality that

∫
Ωℎ

(𝛾ℎ𝐴ℎ ∶ 𝐷2
ℎ𝑣)(Δℎ𝑣)𝑑𝑥 = ‖Δℎ𝑣‖2𝐿2(Ωℎ) +∫

Ωℎ

[(𝛾ℎ𝐴ℎ − 𝐼) ∶ 𝐷2
ℎ𝑣](Δℎ𝑣)𝑑𝑥

≥ ‖Δℎ𝑣‖2𝐿2(Ωℎ) − 𝛿‖𝐷2
ℎ𝑣‖𝐿2(Ωℎ)‖Δℎ𝑣‖𝐿2(Ωℎ)

≥ ‖Δℎ𝑣‖2𝐿2(Ωℎ) − 𝛿{[‖Δℎ𝑣‖𝐿2(Ωℎ)

+ 𝐶†[( ∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]}‖Δℎ𝑣‖𝐿2(Ωℎ)

= (1−𝛿)‖Δℎ𝑣‖2𝐿2(Ωℎ)−𝛿𝐶†[(∑
𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2+ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]‖Δℎ𝑣‖𝐿2(Ωℎ).

Consequently, we have

‖Δℎ𝑣‖𝐿2(Ωℎ) ≤ ( 𝛼
−1

1 − 𝛿)‖𝐴ℎ ∶ 𝐷
2
ℎ𝑣‖𝐿2(Ωℎ)

(D.17)

+ (
𝛿𝐶†
1 − 𝛿)[( ∑

𝑒∈ℰ𝑖ℎ

|𝑒|−1‖[[𝜕𝑣/𝜕𝑛]]‖2𝐿2(𝑒))
1
2 + ℎ3‖∇𝑣‖𝐿∞(Ωℎ)]

by using (D.15) and the Cauchy-Schwarz inequality.
The estimate (4.13) follows from Lemma D.1 and (D.17).
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