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Convergence analysis of an adaptively regularized
natural gradient method

Jiayuan Wu, Jiang Hu, Hongchao Zhang, and Zaiwen Wen

Abstract—In this paper, we study the convergence properties
of the natural gradient methods. By reviewing the mathematical
condition for the equivalence between the Fisher information
matrix and the generalized Gauss-Newton matrix, as well as
the comparisons on the computation and storage, we reveal
the popularity of the natural gradient method. To ensure the
global convergence, an adaptively regularized natural gradient
method is proposed. By requiring sufficient probabilistic accurate
estimations on both the function and the gradient evaluations, we
establish the almost sure convergence. In the local convergence,
we employ the local error bound condition and show the
convergence rate can be quadratic by adding mild assumptions
on the stochastic estimates of gradients and Fisher information
matrices. Preliminary numerical experiments on the regularized
logistic regression are performed to support our findings.

Index Terms—Fisher information matrix, natural gradient
method, adaptive regularization, local error bound, quadratic
convergence rate

I. INTRODUCTION

We consider the optimization problem

min
θ∈Rn

h(θ) =
1

N

N∑
i=1

L(yi, f(xi, θ)), (1)

where {(xi, yi)}Ni=1 ⊂ Rd × Rm is a set of data points
satisfying (xi, yi) ∼ Qx,y with the true data distribution Qx,y

and corresponding density q(x, y) = q(x)q(y|x), f(·, θ) :
Rd → Rm is the input-output mapping with parameter θ, and
L is the single-data loss function. We mainly focus on the
negative log-probability loss function

L(y, f(x, θ)) = − log p(y|f(x, θ)), (2)

where p(y|f(x, θ)) is the density function of y conditioning
on f(x, θ). However, our analysis can be applied to other loss
functions as long as the required conditions and assumptions
are satisfied. The connection between several loss functions L
and its corresponding conditional distribution are established
in [1], e.g., the square loss and standard Gaussian distribution,
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cross-entropy loss and the multinomial distribution. The equiv-
alence between the negative log probability loss and Kullback-
Leibler divergence is shown in [1] as well.

A. Literature review

Problem (1) is ubiquitous in deep learning [2], [3], rein-
forcement learning [4], signal processing [5], [6], and quantum
physics/chemistry [7], [8]. For a multi-layer feed-forward
neural network, f(x, θ) is the output of the last layer with
respect to the input x and the network parameters θ. For
the loss L, it is usually set to the cross-entropy loss for
the image classification task. Various algorithms have been
developed to solve (1). The first-order methods include the
stochastic gradient method [9], the stochastic variance-reduced
gradient method [10], SAGA [11] and adaptive gradient
methods [12], [13]. We refer to the book [14] for more
details. By exploiting the log-probability structure of the loss
function, an efficient natural gradient method (NGM) using
the information geometry of the parameter space is initially
proposed in [15]. A Fisher’s method of scoring based on the
full-batch gradient and the exact Fisher information matrix
is also presented in [16]. Later, it is shown in [2], [17]–
[21] that the natural gradient-type method can outperform
the stochastic gradient-type methods when tackling large-scale
learning problems. Approximate Newton and quasi-Newton
methods [22]–[26] have been developed to achieve faster
convergence than stochastic gradient-type methods. Compared
with these methods, the natural gradient-type methods are
more suitable to solve large-scale learning problems in terms
of computation and efficiency, especially when the Kronecker
factored approximations are used.

The convergence of the stochastic gradient-type methods
are extensively studied in [27]–[34]. In the nonconvex case,
the Lipschitz continuity of ∇h and bounded variance are
standard assumptions for the almost sure convergence of
the gradient norm. However, the theoretical bound in their
analysis with these assumptions suggests slower convergence
than the empirical performance. The Polyak-Łojasiewicz con-
dition proposed in [35] is utilized [36] to prove the linear
convergence rate of the stochastic gradient method. Recently,
the Kurdyka-Łojasiewicz inequality [37] is also investigated
to derive the convergence of the iteration sequence, as well
as the convergence rate. As to the natural gradient method,
the linear convergence from random initialization has been
shown in [38] for an over-parameterized neural network model
under an additional stable Jacobian condition. It is well-
known that Newton-type methods, such as the Gauss-Newton
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method and the Levenberg–Marquardt method, enjoy locally
superlinear or quadratic convergence rate [39, Subsection 10.3]
for deterministic optimization.

B. Contribution

Although the practicability of the NGM has been verified
in a wide range of applications, its theoretical property has
not been well understood. The goal of this paper is to
derive global convergence of the NGM through an adaptive
stochastic trust region framework and establish its fast local
convergence by utilizing the regularity conditions of h and the
connections between the Fisher information matrix (FIM) and
the Hessian of the objective function. We first review several
definitions of the FIMs and establish their connections to the
generalized Gauss-Newton (GGN) matrix. Both mathematical
and computational comparisons between the FIMs and the
GGN matrix reveal the popularity of the NGM. Furthermore,
the contributions of this paper are summarized as follows.

• A strategy of adaptive regularization in the stochastic trust
region framework is proposed to ensure the global con-
vergence of NGM. Our main contributions in the analysis
lie in the generalization of the results of stochastic trust
region method in [40] from the trust-region constraint to
the adaptive regularization for solving the optimization
problem (1). Besides, with the assumption of sufficiently
probabilistic accurate estimations on the objective func-
tion values, we have weakened the condition of the
acceptance of the iterates, i.e., removed the dependency
on the gradient norms.

• We investigate the local error bound condition instead
of the locally strong convexity in the analysis of the
locally quadratic convergence rate of NGM. With two
stochastic conditions on the estimates of function values
and gradients, we prove the locally quadratic convergence
of NGM. The key tools exploited here are the equivalence
between the FIM and GGN matrices, and the perturbation
analysis used in the eigenvalue and singular value de-
compositions under the local error bound condition. The
quadratic convergence rate of the iterates achieved in this
work is significantly stronger than the linear convergence
rate of the outputs reported in [38, Theorem 2].

Notation. For any n ∈ N, we use the abbreviation [n] :=
{1, . . . , n}. For a vector x ∈ Rn, we use ∥x∥ to denote its ℓ2
norm. For a matrix X ∈ Rm×n, ∥X∥ and ∥X∥F are defined
as the spectral norm and the Frobenius norm, respectively.
The notations X ⪰ 0 and X ≻ 0 denote the sets of positive
semidefinite and positive definite matrices, respectively.

Organization. In Section II, we give the definitions of FIMs
and the GGN, and clarify their connections. A globalized
NGM together with almost sure convergence in the gradient
norm is presented in Section III. In Section IV, we show the
local quadratic convergence rate of the iterates. Numerical
experiments on the logistic regression problem are reported
in Section V.

II. RELATIONS BETWEEN THE HESSIAN, THE GGN
MATRIX, AND THE FIM

The goal of this section is to review when the FIM may
serve as a good approximation of the Hessian matrix of h.
The key is to establish the connection with the GGN matrix.
As the GGN matrix is computationally expensive in the large-
scale optimization setting, the NGM based on FIM gains much
attention due to its tractable computation. We assume in the
following that h is sufficiently regular, which holds if the loss
function L and the input-output mapping function f and log p
are sufficiently regular, such that the corresponding Hessian
and the FIM are well-defined.

A. Computation of the Hessian matrix and the GGN matrix

Let ∇vh and ∇2
vh denote the gradient and Hessian of a real-

valued function h with respect to a variable v, respectively.
The j-th component of f(x, θ) ∈ Rm is expressed as fj(x, θ).
The Jacobian matrix Jf(x,θ)(θ) of f(x, θ) with respect to θ is
defined as

Jf(x,θ)(θ) = ∇θf(x, θ)
⊤ =

∇θf1(x, θ)
⊤

. . .
∇θfm(x, θ)⊤

 ∈ Rm×n.

For {(xi, yi)}Ni=1, we denote

J(θ) =

Jf(x1,θ)(θ)
...

Jf(xN ,θ)(θ)

 ∈ RmN×n

and

G(θ) =

 ∇zL(y1, z)|z=f(x1,θ)

...
∇zL(yN , z)|z=f(xN ,θ)

 ∈ RmN .

We also define two block diagonal matrices:

HL(θ) =

H1(θ)
. . .

HN (θ)

 ∈ RmN×mN

and

H̄L(θ) =

H̄1(θ)
. . .

H̄N (θ)

 ∈ RmN×mN ,

where Hi(θ) = ∇2
zL(yi, z)|z=f(xi,θ)∈ Rm×m and H̄i(θ) =

∇zL(yi, z)|z=f(xi,θ)∇zL(yi, z)
⊤|z=f(xi,θ)∈ Rm×m.

By the chain rule, the Hessian matrix of h is given by

∇2
θh(θ) =

1

N

N∑
i=1

[
J⊤
f(xi,θ)

(θ) ∇2
zL(yi, z)

∣∣
z=f(xi,θ)

Jf(xi,θ)(θ)
]

︸ ︷︷ ︸
:=HGN (θ)∈Rn×n

+
1

N

N∑
i=1

 m∑
j=1

∇2
θ[fj(xi, θ)] ∇zjL(yi, z)

∣∣
z=f(xi,θ)

 .

(3)
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Here, HGN (θ) is called the GGN matrix [41]. Based on the
previous notations, we have

HGN (θ) =
1

N
J(θ)⊤HL(θ)J(θ). (4)

When θ∗ is a local minimum with ∇zL(yi, z)|z=f(xi,θ∗) ≈ 0
for each (xi, yi) (which happens if each training pair (xi, yi)
is fitted accurately by the network f ), the GGN matrix can
serve as a good approximation of ∇2

θh(θ).

B. Computation of various FIMs

By [42], the FIM of h defined (1) with the loss function (2)
is defined as

F (θ) =
1

N

N∑
i=1

Ey∼py|xi
(θ)

[
∇θ log p(y|xi, θ)∇θ log p(y|xi, θ)

⊤]
(5)

where py|xi
(θ) := p(y|f(xi, θ)) and p(y|xi, θ) =

p(y|f(xi, θ)). Then, by chain rule we have

∇θ log p(y|xi, θ) = ∇θf(xi, θ)∇z log p(y|z)|z=f(xi,θ)∈ Rn.
(6)

Using L(y, z) = − log p(y|z) by (2) and changing the order
of taking the integral and the derivatives, one has

Ey∼py|xi
(θ)

[
∇z log p(y|z)|z=f(xi,θ)∇z log p(y|z)⊤|z=f(xi,θ)

]
=Ey∼py|xi

(θ)

[
H̃i

]
=: Ĥi(θ),

(7)
where H̃i = ∇2

zL(y, z)|z=f(xi,θ) and the first equality holds
because

Ey∼p(y|z)[−∇2
z log p(y|z)]

=

∫
∇p(y|z)∇p(y|z)⊤ − p(y|z)∇2

zp(y|z)
p2(y|z)

p(y|z)dz

=Ey∼p(y|z)[∇z log p(y|z)∇z log p(y|z)⊤]−∇2
z

∫
p(y|z)dz

=Ey∼p(y|z)[∇z log p(y|z)∇z log p(y|z)⊤].
Then, by plugging (6) and (7) into (5), an equivalent formu-

lation of F is given by

F (θ) =
1

N

N∑
i=1

J⊤
f(xi,θ)

(θ)Ĥi(θ)Jf(xi,θ)(θ)

=
1

N
J(θ)⊤H(θ)J(θ),

(8)

where H(θ) is a block diagonal matrix with i-th block being
Ĥi(θ).

When the conditional expectation Ey∼py|xi
(θ) does not

have an explicit form, a sampling approach can be used to
approximate this expectation. Specifically, for each xi, we
can sample y from the density Py|xi

(θ) multiple times to get
y1i , · · · , yN

y

i with Ny ∈ N. In addition, a minibatch BF ⊂ [N ]
can also be sampled to further reduce computation. Thus, we
can obtain the minibatch FIM given by

F̃ (θ) =
1

bF

∑
i∈BF

Ny∑
j=1

∇θ log p(y
j
i , f(xi, θ))∇θ log p(y

j
i , f(xi, θ))

⊤

(9)

with bF = |BF | ·Ny and |BF | being the cardinality of BF .
Note that the minibatch FIM F̃ involves resampling to

approximate Ey∼Py|xi
(θ). By utilizing the observed data points

{(xi, yi)}Ni=1, the Empirical FIM (EFIM) is proposed in [41]
for practical purpose, namely,

F̄ (θ) =
1

N

N∑
i=1

∇θ log p(yi, f(xi, θ))∇θ log p(yi, f(xi, θ))
⊤

=
1

N

N∑
i=1

J⊤
f(xi,θ)

(θ)H̄i(θ)Jf(xi,θ)(θ) =
1

N
J(θ)⊤H̄L(θ)J(θ).

(10)
Different from the FIM, the definition of EFIM does not rely
on the exact expression of p. Hence, the EFIM can also be
defined for loss functions L, which do not obey the form of
negative log probability [1, Section 11.1]. Analogous to the
minibatch FIM, the minibatch sampling of [N ] in (10) can also
be utilized to approximate F̄ (θ) and reduce the computations.

C. Connections between FIMs and the GGN matrix

From (4), (8), and (10), we see the differences between
FIMs and the GGN matrix lie in three matrices, H(θ),
H̄L(θ) and HL(θ). It follows the definition of Hi(θ) that
if ∇2

zL(y, z) does not depend on y, we will have Ĥi(θ) =
∇2

zL(yi, z)|z=f(xi,θ), and in this case, F (θ) = HGN (θ). It is
noted in [1] that this independence condition will be satisfied
by the loss L from the standard Gaussian distribution and the
multinomial distribution. For more general distributions, one
can refer to [1, Section 9.2]. As pointed out in [43], since yi
may not be sampled from the predictive distribution p(y|xi, θ),
the EFIM is not a Monte Carlo estimate of the FIM and the
equivalence between the EFIM and the FIM relies on strong
assumptions, e.g., a correct model f and enough data relative
to model capacity. In the case that yi ≈ f(xi, θ), the EFIM
goes to zero while the FIM and the GGN matrix approach the
Hessian. They also explain the practical success of the EFIM
based methods from the perspective of variance adaptation.

Although the FIM coincides with the GGN matrix mathe-
matically under the above-mentioned independence condition,
the computation of the FIM only involves the gradient of h and
the expectation, which can be obtained without formulating the
Jacobian. In particular, for f from the deep neural network
applications, the explicit storage of the Jacobian is costly and
not available in pytorch and tensorflow. These tools often
provide the access to the Jacobian vector products but the
cost is still expensive when the batch size is large. In the
construction of mini-batch FIM and EFIM, we only need
to compute the gradients on the resampled or observed data
points, which can be efficiently calculated through the back
propagation. These comparisons are summarized in Table I,
while the connections between different FIMs and the GGN
matrix are presented in Figure 1. Due to tractability of the
computation, the minibatch FIM and the EFIM are two popular
approximations widely used in the literature for solving deep
learning problems, see, e.g., [2], [3], [44]. However, the
convergence properties of FIM based stochastic methods are
not well explored. In the following of the paper, we would
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TABLE I: Comparisons on computations among different
FIMs and the GGN matrix.

Computation ingredients and storage
The GGN matrix J(θ), HL(θ)
Minibatch FIM {∇θL(y, f(x, θ))}x∈{x1,...xn}×y∼py|x(θ)

EFIM {∇θL(yi, f(xi, θ))}Ni=1

derive the global and local convergence of NGMs through the
connections between the FIMs and the GGN matrix, which
could help us to better understand their practical efficiency.

III. GLOBAL CONVERGENCE OF AN ADAPTIVELY
REGULARIZED NGM

Note that the FIMs are always positive semidefinite. By
adding a regularization term, the commonly used iterative
scheme of the NGM [2], [3], [17], [19] is given by

θk+1 = θk + dk, (11)

where dk is obtained by the solution of

min
d∈Rn

mk(d) := g⊤k d+
1

2
d⊤(Fk + λkI)d. (12)

Here, Fk ⪰ 0 is the minibatch EFIM or minibatch FIM
approximation of F (θk), λk > 0 is a regularization scalar,
and gk = gk(θk) is a mini-batch approximation of the gradient
∇θh(θk), where

gk(θk) :=
1

bgk

∑
i∈Bg

k

∇θL(yi, f(xi, θk)) (13)

=
1

bgk

∑
i∈Bg

k

J⊤
f(xi,θ)

(θk)∇zL(yi, z)|z=f(xi,θk)

=
1

bgk
Jk(θk)

⊤Gk(θk) (14)

with Bg
k = {ik,1, . . . , ik,bgk} ⊂ [N ], bgk = |Bg

k|,

Jk(θ) =


Jf(xik,1

,θ)(θ)

...
Jf(xi

k,b
g
k

,θ)(θ)

 ,

Gk(θ) =


∇zL(yik,1

, z)|z=f(xik,1
,θ)

...
∇zL(yik,b

g
k

, z)|z=f(xi
k,b

g
k

,θ)

 .

(15)

Since Fk+λkI ≻ 0, the solution of (12), (Fk+λkI)
−1gk, al-

ways exists uniquely. In general, the update (11) may not lead
to convergence. The behaviour highly relies on the specific
choice of the step size αk (which is 1 in (11)). One of our goals
is to ensure global convergence by adaptively updating the
regularization scalar λk. Of course, another possible strategy is
to adapt a diminishing step size αk by using the backtracking
line search as in [45], [46], and to update θk+1 = θk+αkdk.

A. An adaptively regularized NGM

Denoting Gk = Gk(θk), our adaptively regularized NGM
sets the regularization scalar

λk =
σk√
bgk

∥Gk∥, (16)

where the regularization parameter σk is adaptively updated in
the algorithm. In addition to the mini-batch approximations in
(13), at the k-th iteration, we define mini-batch approximations
of h0

k ≈ h(θk) and hd
k ≈ h(θk + dk), respectively, by

h0
k =

1

bhk

∑
i∈Bh

k

L(yi, f(xi, θk)),

hd
k =

1

bhk

∑
i∈Bh

k

L(yi, f(xi, θk + dk)).
(17)

For evaluation of the step dk, we introduce

ρk =
h0
k − hd

k

mk(0)−mk(dk)
=

h0
k − hd

k

−mk(dk)
(18)

and use the update rule

θk+1 =

{
θk + dk, if ρk ≥ η1,

θk, otherwise,
(19)

with some parameter η1 ∈ (0, 1). Due to the stochastic
inexactness of the sample average estimates h0

k, h
d
k, gk, the

classic updating rule [39] for σk only depending on ρk does
not guarantee the convergence. Here, we use an updating rule
for regularization parameter σk in spirit similar to the strategy
used in [47], [48],

σk+1 =

{
max{γσk, σmin}, if ρk ≥ η1 and ∥gk∥ ≥ η2

σk
,

1
γσk, otherwise,

(20)
where 0 < γ < 1, η2 > 0 and σmin > 0 are constants.
Our adaptively regularized NGM is presented in Algorithm 1.
In contrast to the algorithms in [32] and [33] that use the
Gauss-Newton matrix-based Levenberg–Marquardt method,
Algorithm 1 is a FIM-based natural gradient method for
solving problem (1) and its convergence is more complicated
due to the use of inexact function evaluations. We note that a
stochastic trust-region algorithm is presented in [40]. In com-
parison to their method, where θk+1 = θk+dk if both ρk ≥ η1
and ∥gk∥ ≥ η2

σk
, Algorithm 1 utilizes adaptive regularization

and has a less strict acceptance rule as defined in equation
(19), i.e., removing the dependency on the gradient norms.
In addition, the subproblem (12) can be efficiently solved if
the cost of the inverse of the matrix Fk + λkI and a vector
multiplication is low. In [2], the authors employ the multi-layer
structure of the neural network and give a Kronecker-factored
approximation of Fk to reduce the large scale matrix into
the Kronecker product of two smaller matrices. In addition, a
block diagonal approximation is investigated to further reduce
the computations of the inverses.
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Minibatch FIM FIM EFIM

The GGN matrix

∇2
zL(y, z) does not depend on y

Resample y from Py|x(θ) Empirical distribution {(xi, yi)}

for Py|x(θ)

Fig. 1: Implications between different concepts of the FIMs and the GGN matrix.

Algorithm 1 An adaptively regularized NGM.

Input: Parameters θ0, σ0 and constants η1 ∈ (0, 1), γ ∈
(0, 1), η2 > 0, σmin > 0. Set k = 0.
while stopping conditions not met do

Choose mini-batch index set Bg
k ⊂ [N ], and compute gk

and Gk.
Compute Fk and set λk = σk√

bgk
∥Gk∥.

Compute dk as the solution of (12).
Choose mini-batch index set Bh

k ⊂ [N ], compute h0
k and

hd
k.

Calculate ratio ρk by (18).
Update θk+1 by (19) and σk+1 by (20).
k = k + 1.

end while

B. Global convergence

Before presenting the convergence, let us start with some
necessary notations. We use Mk to denote the random model
in the k-th iteration and mk = Mk(ω) to denote its realization.
Consequently, the iterates Θk, the regularization parameters
Λk, Σk, and the iteration steps Dk are also random quan-
tities. Let θk = Θk(ω), λk = Λk(ω), σk = Σk(ω), and
dk = Dk(ω) be their realizations. Besides, we use {O0

k, O
d
k}

to denote the stochastic estimates of {h(Θk), h(Θk + Dk)}.
Their realizations are represented by h0

k = O0
k(ω) and hd

k =
Od

k(ω). Let Gk be the stochastic estimate of ∇h(Θ) with
gk = Gk(ω) being its realization. Hence, a stochastic process
{Θk, Gk,Mk, Dk, O

0
k, O

d
k,Σk,Λk} is generated by Algorithm

1.
For the simplicity in emphasizing the dependency of ran-

dom quantities, we define FM,O
k−1 as the σ-algebra gener-

ated by M0, . . . ,Mk−1, and O0
1, O

d
1, . . . , O

0
k−1, O

d
k−1. Let

FM,O
k−1/2 be the σ-algebra generated by M0, . . . ,Mk and

O0
1, O

d
1, . . . , O

0
k−1, O

d
k−1. Let FM

k−1 be the σ-algebra gener-
ated by M0, . . . ,Mk−1. To derive global convergence, we need
the following assumption.

Assumption 1. Define L(θ0) = {θ ∈ Rn : h(θ) ≤ h(θ0)}.
(a) The function h is twice continuously differentiable and

bounded from below. Its gradient is Lipschitz continuous
with modulus κh, i.e., for any θ1, θ2,

∥∇h(θ1)−∇h(θ2)∥ ≤ κh∥θ1 − θ2∥. (21)

In addition, the Jacobian Jf(xi,θ)(θ) and
∇zL(yi, z)|z=f(xi,θ) are bounded on L(θ0) with con-

stants κJ and κG , i.e., for all i ∈ [N ] and any θ ∈ L(θ0),
∥Jf(xi,θ)∥ ≤ κJ , ∥∇zL(yi, z)|z=f(xi,θ)∥ ≤ κG .

(b) The approximate FIM Fk is bounded from above for all
k, i.e., there exists κfim such that

∥Fk∥ ≤ κfim, ∀k = 1, 2, . . . (22)

(c) The mini-batch index set Bg
k is chosen such that the

sequence of random gradients {Gk} is at least 1
2 -

probabilistically κg

σk
-first-order accurate, i.e.,

P (Ek,G|FM,O
k−1 ) ≥ 1

2
, (23)

where Ek,G :=
{
∥Gk −∇h(θk)∥ ≤ κg

σk

}
with κg > 0.

(d) The mini-batch index set Bh
k is chosen such that the

sequence of random function values {O0
k, O

d
k} is at least

(1− τk)-probabilistically ϵkO-zero-order accurate, i.e.

P (Ek,O|FM,O
k−1/2) ≥ 1− τk (24)

with a sequence {τk} such that τk ∈ [0, 1),
∑∞

k=1 τk <
∞ and the event

Ek,O =
{
|O0

k − h(θk)| ≤ ϵkO, |Od
k − h(θk + dk)| ≤ ϵkO

}
,

(25)

where ϵkO := min

{
η1∥gk∥2

8(∥Fk∥+σk/
√

bgk∥Gk∥)
, κO

σ2
k

}
and κO >

0 is a constant.

Remark 1. The Assumptions 1 (a) and (b) are standard in the
analysis of optimization methods [31], [39]. In addition, the
Assumptions (c) and (d) can be satisfied if the batch sizes for
evaluating gradient and function estimations are large enough.
We refer to [40], [48] for similar assumptions.

The global convergence proof can be split into the following
steps. Firstly, we show σk will go to infinity almost surely.
Secondly, we show that the trial step θk+dk will be accepted
as θk+1 for sufficiently large σk if the gradient and func-
tion value estimates are sufficiently accurate. Finally, by the
martingale theorem [49, Exercise 5.3.1], we show the almost
sure convergence of the gradient norms. Let us start with the
sufficient function value reduction under Ek,O.

Lemma 1. Suppose that Assumption 1 (b) holds. For any
successful update at θk (i.e., ρk ≥ η1), when the event Ek,O

happens, we have

h(θk+1) ≤ h(θk)−
η1∥gk∥2

4
(
κfim + (σk/

√
bgk)∥Gk∥

) , (26)
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where Ek,O is defined in (25).

Proof. By (12) and Fk ⪰ 0, it holds that

−mk(dk) ≥
1

2

∥gk∥2

∥Fk + λkI∥
=

∥gk∥2

2
(
∥Fk∥+ (σk/

√
bgk)∥Gk∥

) .
(27)

So, for a successful update θk+1 = θk + dk, by (19) we have

h0
k − hd

k ≥ −η1mk(dk) ≥
η1∥gk∥2

2
(
∥Fk∥+ (σk/

√
bgk)∥Gk∥

) .
Under event Ek,O, we have h0

k and hd
k are ϵkO-accurate. Hence,

by Assumption 1 (b) and (25), we have

h(θk)− h(θk+1) = h(θk)− h0
k + h0

k − hd
k + hd

k − h(θk+1)

≥ η1∥gk∥2

4
(
∥Fk∥+(σk/

√
bgk)∥Gk∥

) ≥ η1∥gk∥2

4
(
κfim+(σk/

√
bgk)∥Gk∥

) .

Lemma 2. Suppose that Assumption 1 (a), (b), and (d) hold.
Let {Σk} be generated by Algorithm 1. Then, it holds almost
surely that

lim
k→∞

Σk = +∞. (28)

Proof. First, for any ϵ ∈ (0, 1), it follows from τk ∈ [0, 1) and∑∞
k=1 τk < ∞ in Assumption 1 (d) that there exists a K > 0

such that
∞∑

k=K

τk ≤ − ln(1− ϵ)

2
and τk ∈ [0, 1/2) for all k ≥ K,

which implies that
∞∏

k=K

(1− τk) ≥ exp

(
−2

∞∑
k=K

τk

)
≥ 1− ϵ.

Hence, by Assumption 1 (d), we have

P
(
Ek,O happens for all k ≥ K

)
≥

∞∏
k=K

(1− τk) ≥ 1− ϵ.

(29)
In the following, conditioning on the event that Ek,O happens
for all k ≥ K, we show by contradiction as in [48, Lemma
2.5] that limk→∞ σk = ∞, where the sequence {σk} is any
realization of {Σk}.

Suppose that σk does not go to ∞. Then, there exist σ̃ such
that the set S1 = {k : σk < σ̃} is infinite. (Otherwise, if such
σ̃ does not exist, σk goes to ∞.) Due to 0 < γ < 1, the set
S2 := {k : σk < σ̃/γ} is also infinite. Consider the set

S3 := {k ∈ S2 : σk+1 ≤ σk}. (30)

We claim that S3 is also infinite. If not, there exists a constant
N0 ∈ S2 such that σk+1 > σk for all k ≥ N0 and k ∈ S2.
Since σk ≥ σ̃/γ for all k /∈ S2, by the updating rule (20) of
σk, there exists a N1 > N0 such that σk ≥ σ̃ for all k ≥ N1.
This conflicts to the infiniteness of S1. Hence, S3 is infinite.
Now, from the update rule (20) and the definition of S3, it
holds that

∥gk∥ ≥ η2
σk

, ρk ≥ η1, and σk <
σ̃

γ
∀k ∈ S3.

Since Ek,O happens for all k ≥ K, we have from the updating
rule (19) of θk that the sequence {h(θk)}∞k=K is monotonically
nonincreasing, and from Lemma 1 that

h(θk)− h(θk+1) ≥
η1∥gk∥2

4
(
κfim + (σk/

√
bgk)∥Gk∥

)
≥ η1η

2
2

4σ2
k(κfim + σkκG)

≥ η1η
2
2γ

3

4σ̃2(γκfim + σ̃κG)

for all k ∈ S3 and k ≥ K, where the second inequality
follows from Assumption 1 (a) and ∥Gk∥ ≤ κG

√
bgk. Since

the sequence {h(θk)}∞k=K is nonincreasing, for all ℓ ≥ K we
have

h(θK)− h(θℓ+1) ≥
∑

j∈S3, K≤j≤ℓ

h(θj)− h(θj+1)

≥
∑

j∈S3, K≤j≤ℓ

η1η
2
2γ

3

4σ̃2(γκfim + σ̃κG)
.

Taking ℓ → +∞ and noticing the infiniteness of S3, the above
inequality contradicts with the bounded below assumption of
h.

Hence, for any 0 < ϵ < 1 we have

P

(
lim
k→∞

Σk = ∞
)

≥ P (Ek,O happens for all k ≥ K) ≥ 1−ϵ.

Then, by the arbitrary choice of 0 < ϵ < 1, limk→∞ Σk = ∞
almost surely.

The following lemma reveals that when both events Ek,G

and Ek,O happen and σk is sufficiently large, we will have
the update θk+1 = θk + dk.

Lemma 3. Suppose that Assumption 1 (a) and (b) hold. When
the events Ek,G and Ek,O happen and

σk ≥ max

{
κfim

κG
,
4κGκ

2
J(κg + κh) + 8κGκO

(1− η1)∥gk∥2

}
, (31)

it holds that ρk ≥ η1 and θk+1 = θk + dk.

Proof. It follows from Assumption 1 (a) and the definition of
gk in (13) that

∥gk∥ =

∥∥∥∥∥∥ 1

bgk

∑
i∈Bg

k

J⊤
f(xi,θ)

(θ)∇zL(yi, z)|z=f(xi,θ)

∥∥∥∥∥∥
≤ 1

bgk

∑
i∈Bg

k

∥∥∥J⊤
f(xi,θ)

(θ)∇zL(yi, z)|z=f(xi,θ)

∥∥∥
≤ κJ

bgk

√
bgk∥Gk∥ =

κJ√
bgk

∥Gk∥,

(32)

where the second inequality is due to ∥Jf(xi,θ)∥ ≤ κJ and
Gk = G(θk) is defined in (13).

Since σk ≥ κfim/κG and the assumption ∥Fk∥ ≤ κfim,
recalling ∥Gk∥ ≤ κG

√
bgk, (27) and Fk ⪰ 0, we have

−mk(dk) ≥
∥gk∥2

4σkκG
,

∥dk∥ =

∥∥∥∥∥
(
Fk + (σk/

√
bgk)∥Gk∥I

)−1

gk

∥∥∥∥∥ ≤ κJ

σk
,
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where the second inequality uses (32). Then, by the Lipschitz
continuity of ∇h in Assumption 1 (a), when the event Ek,G

happens, we have

h(θk + dk)− h(θk)−mk(dk) (33)

≤ d⊤k (∇h(θk)− gk) +
κh

2
∥dk∥2 (34)

≤ κg

σk
∥dk∥+ κh∥dk∥2 ≤ κ2

J(κg + κh)

σ2
k

.

Hence, when the event Ek,O also happens, we have

1− ρk =
−mk(dk)− h0

k + hd
k

−mk(dk)

=
−mk(dk)− h(θk) + h(θk + dk) + h(θk)− h0

k − h(θk + dk) + hd
k

−mk(dk)

≤ κ2
J(κg + κh)/σ

2
k + 2κO/σ

2
k

∥gk∥2/(4σkκG)
=

4κGκ
2
J(κg + κh) + 8κGκO

σk∥gk∥2
≤ 1− η1,

which implies ρk ≥ η1. Then, θk+1 = θk + dk follows from
the updating rule (19), ρk ≥ η1. We complete the proof.

From Lemmas 1, 2, and 3, we are going to show the almost
sure convergence of Algorithm 1. To proceed it, we need the
following result on the convergence of submartingales.

Proposition 1. [49, Exercise 5.3.1] Let Qk be a submartin-
gale, i.e., a sequence of random variables which, for every k,
E
[
Qk|FQ

k−1

]
≥ Qk−1, where FQ

k−1 = σ(Q0, . . . , Qk−1) is

the σ-algebra generated by Q0, . . . , Qk−1, and E
[
Qk|FQ

k−1

]
denotes the conditional expectation of Qk given the past
history of events FQ

k−1. If Qk −Qk−1 ≤ C < ∞, for every k,
then,

P

({
lim
k→∞

Qk < ∞
}
∪
{
lim sup
k→∞

Qk = ∞
})

= 1.

With the above proposition, there is at least a subsequence
generated by Algorithm 1 converging to a stationary point
almost surely.

Theorem 1. Suppose that Assumption 1 holds. Let {Θk} be
the random iterates generated by Algorithm 1. Then, it holds
almost surely that

lim inf
k→∞

∥∇h(Θk)∥ = 0. (35)

Proof. We prove (35) by way of contradiction. If (35) does
not hold, then there exist τ > 0, ξ > 0, and an integer K > 0
such that

P
(
∥∇h(Θk)∥ ≥ ξ for all k ≥ K

)
≥ 3τ. (36)

By (36) and the inequality (29) with ϵ = τ , when K is
sufficiently large, we have

P
(
∥∇h(Θk)∥ ≥ ξ and Ek,O happens for all k ≥ K

)
≥ 2τ.

(37)
Let us define a random variable

Zk = logγ−1(Σ−1
k ) (38)

and zk be its realization. By Lemma 2, limk→∞ Σk = ∞
almost surely. So, when K is sufficiently large, we have

P
(

inequality (40) holds for all k ≥ K
)
≥ 1− τ, (39)

where

Σk ≥ Σ̄(ξ) :=

max

{
2κg

ξ
,
2η2
ξ

,
κfim

κG
,
16κGκ

2
J(κg + κh) + 32κGκO

(1− η1)ξ2
,
σmin

γ

}
.

(40)
Combing (37) and (39), it gives P (Ê) ≥ τ, where the event
Ê is defined as

Ê :=
{
∥∇h(Θk)∥ ≥ ξ, Ek,O happens

and inequality (40) holds for all k ≥ K
}
.

In the following, let us consider the stochastic process gen-
erated by Algorithm 1 conditioning on the event Ê. Without
loss of generality, let us simply assume K = 0 in the rest of
the proof.

First, let the event Êk,G be the event Ek,G conditioning on
Ê. Then, by Assumption 1 (c) and the definition (23) of Ek,G,
we have

P (Êj,G|FM
j−1) = P (Ej,G|FM

j−1, Ê) = P (Ej,G|FM
j−1) ≥ 1/2.

(41)
Let Wj =

∑j
k=0(2 · 1Êk,G

− 1) with 1Êk,G
being the

characteristic function of Êk,G, i.e., 1Êk,G
is 1 if Êk,G happens

and 0 otherwise. Then,

Wj =

{
Wj−1 + 1, if 1Êj,G

= 1,

Wj−1 − 1, otherwise,
(42)

which gives
|Wj −Wj−1| = 1. (43)

Using (41) and (42), the conditional expectation satisfies

E(Wj |FM
j−1) = E(Wj−1|FM

j−1) + E(2 · 1Êj,G
− 1|FM

j−1)

= Wj−1 + 2P (Êj,G|FM
j−1)− 1

≥ Wj−1 + 2 · 1
2
− 1 ≥ Wj−1,

which implies Wj is a submartingale. By (43) and Proposition
1, we have

P

(
lim sup
j→∞

Wj = ∞
)

= 1. (44)

Conditioning on Ê, let us consider two cases at the k-th
iteration: Êk,G happens and Êk,G does not happen.

• Êk,G happens (i.e. Ek,G happens conditioning on Ê): In
this case, we have ∥gk −∇h(θk)∥ ≤ κg

σk
≤ ξ

2 . Then,

∥gk∥ ≥ ∥∇h(θk)∥ − ∥∇h(θk)− gk∥ ≥ ξ

2
.

It follows from (40) and Lemma 3 that ∥gk∥ ≥ η2/σk

and ρk ≥ η1 for all k ≥ K. Then, it follows from the σk

updating rule (20) and σk ≥ σmin/γ that σk+1 = γσk.
Therefore,

zk+1 = logγ−1(σ−1
k+1) = logγ−1(γ−1σ−1

k ) = zk + 1.
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Let wk be the realization of Wk. Then, since 1Êk,G
= 1,

by (42) it holds that

zk+1 − zk = wk+1 − wk = 1. (45)

• Ek,G does not happen (i.e. Ek,G conditioning on Ê does
not happen): In this case, by the σk updating rule (20),
we always have σk+1 ≤ (1/γ)σk. Then,

zk+1 = logγ−1(σ−1
k+1) ≥ logγ−1(γσ−1

k ) = zk − 1.

Then, since 1Êk,G
= 0, by (42) it holds that

zk+1 − zk ≥ wk+1 − wk = −1. (46)

Combining (45) and (46), we have zk ≥ wk−w0+z0. Hence,
by (44), one has

P

(
lim sup
k→∞

Zk = ∞
∣∣∣ Ê) = 1. (47)

Since P (Ê) ≥ τ > 0, we have

P

(
lim sup
k→∞

Zk = ∞
)

≥ τ > 0. (48)

By the definition of Zk in (38) and limk→∞ Σk = ∞ almost
surely by Lemma 2, we have limk→∞ Zk = −∞ almost
surely, which contradicts with (48). So, (35) holds almost
surely, and we complete the proof.

Remark 2. Note that the upper boundedness of ∥Fk∥ is
sufficient for the global convergence. This allows using more
practical approximations of FIMs to further reduce the com-
putation, e.g., the Kronecker-factored approximation in [2].

We also note that the result of Theorem 1 can be improved to
the full sequence limk→∞ ∥∇h(Θk)∥ = 0 by a similar proof in
[40, Theorem 4.18]. Moreover, the explicit complexity bound
on the expected number of iterations required to achieve ϵ-
accuracy could be obtained by similar approaches in [50],
which presents the iteration complexity for a class of trust
region based stochastic optimization methods.

The requirement of gradually increasing accuracy on the
estimates of the objective function and gradient is a common
assumption in the context of probabilistic model based algo-
rithms, including [40]. However, these analyses do not rely on
the boundedness of the variance of the estimates, which is often
used in analyzing the stochastic gradient methods. Addition-
ally, we are able to establish the almost sure convergence of
the gradient norms. This is more reliable than the existing the
convergence with expectation or high probability of stochastic
gradient type methods. Although we may need large batch
sizes to obtain accurate gradients and functional evaluations
given by Assumption 1, it will not affect the effectiveness of the
natural gradient methods as large batch training [51]–[53] is
commonly used and could improve numerical performance.

Remark 3. We note that the prox-linear method in [54]
for solving our problem (1) reduces to a stochastic Gauss-
Newton method. This is different from our FIM-based natural
gradient method, where the Jacobian approximation in [54]
is not needed. In addition, since our method is based on the
probabilistic model and the trust-region like adaptive strategy,

both the algorithmic framework and the convergence analysis
are quite different with their method.

Algorithm 2 Local NGM

Input: Choose an initial parameter θ0. Set k = 0.
while stopping conditions not met do

Choose BF
k = Bg

k =: Bk ⊂ [N ] and Ny
k ∈ N .

Compute gk and Fk and set λk = ∥Gk∥/
√
|Bk|.

Compute dk as the solution of (12).
Set θk+1 = θk + dk.
k = k + 1.

end while

In the following section, we examine the local convergence
speed of a NGM type Algorithm 2.

IV. LOCAL CONVERGENCE ANALYSIS OF THE NGM
In the previous section III, we have applied an adaptive

regularization and a trust region type technique to ensure
global convergence. This results the regularization parameter
Σk approaches to infinity almost surely (see Lemma 2). In
fact, from the proof of Theorem 1 we can see that given
any ξ > 0, as long as Σk > Σ̄(ξ) holds almost surely
for all k sufficiently large, where Σ̄(ξ) is defined in (40),
we will have lim infk→∞ ∥∇h(Θk)∥ ≤ ξ almost surely.
Hence, in the practical application of NGM Algorithm 1,
we can set up a sufficiently large upper bound Σ̂ of Σk.
When Σk reaches this upper bound Σ̂ and ∥gk∥ does not
get reduced sufficiently often, we may consider switching to
the local NGM Algorithm 2 to accelerate the convergence. In
Algorithm 2, we update θk+1 = θk + dk at each iteration,
where dk is the solution of (12), and simply set σk = 1 for
convenience of local analysis. However, setting σk to be any
positive constant, for instance setting σk = Σ̂ for all k, will not
affect the analysis of local convergence speed. In addition, at
each iteration of Algorithm 2, we set the minibatch sampling
sets BF

k = Bg
k =: Bk ⊂ [N ] with |Bk| = bk.

For local convergence analysis, we consider the loss func-
tions L(y, z), which are twice continuously differentiable with
respect to z and ∇2

zL(y, z) does not depend on y. In this case,
by (7), we have Ĥi(θ) = ∇2

zL(y, z)|z=f(xi,θ) = Hi(θ). Since
no samplings on y is needed, we have Ny

k = 1. Consequently,
in this case, the minibatch EFIM defined in (9) will be the
same as the minibatch FIM. Furthermore, we assume the
matrix Fk in the quadratic model (12) can be theoretically
written in the form of

Fk =
1

bk
Jk(θk)

⊤Hk(θk)Jk(θk), (49)

where Hk(θ) = Diag(Hi(θ) : i ∈ Bk) is a block-diagonal
submatrix of H(θ).

Remark 4. Note that the Hessian of L with respect to z,
i.e., ∇2

zL(y, z), does not depend on y in many practical
applications in machine learning. For example, it holds for
the following commonly used loss functions:

• For the square loss function L(y, z) = ∥y− z∥22, it holds
that ∇2

zL(y, z) = I .
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• Consider the cross-entropy loss function L(y, z) =
−y log z̃−(1−y) log(1− z̃) with z̃ = Sigmoid(z). Then,
we obtain ∇2

zL(y, z) = diag
(
z̃ ⊙ (1− z̃)

)
.

• For the cross-entropy loss L(y, z) = −
∑
i

[y]i log[z̃]i with

z̃ = Softmax(z), we obtain ∇2
zL(y, z) = diag(z̃)− z̃z̃⊤.

Let Θ∗ be the set of local minimums of (1), which is a
closed set, and let us define

dist(θ,Θ∗) := ∥θ − θ̄∥ with θ̄ ∈ arg min
θ̃∈Θ∗

∥θ̃ − θ∥.

To establish local convergence speed in this section, we also
need the following assumptions.

Assumption 2. Define B(Θ∗, b) = {θ : dist(θ,Θ∗) < b},
where b > 0 is some constant.
(a) For all i ∈ [N ], the Jacobian Jf(xi,θ)(θ), the gra-

dient ∇zL(yi, z)|z=f(xi,θ), and the Hessian Hi(θ) =
∇2

zL(yi, z)|z=f(xi,θ) are Lipschitz continuous over
B(Θ∗, b) with respect to θ. There exist positive constants
LG and LJ such that for any θ1, θ2 ∈ B(Θ∗, b) and any
i ∈ [N ],

∥∇zL(yi, z)|z=f(xi,θ1) −∇zL(yi, z)|z=f(xi,θ2)∥
≤LG∥θ1 − θ2∥,

(50)

and

∥Jf(xi,θ)(θ1)− Jf(xi,θ)(θ2)∥F ≤ LJ∥θ1 − θ2∥. (51)

In addition, for any i ∈ [N ] and θ ∈ B(Θ∗, b), we assume

α1I ⪯ Hi(θ) = ∇2
zL(yi, z)|z=f(xi,θ) ⪯ α2I, (52)

where 0 < α1 < α2 < ∞ are two constants, and for any
θ∗ ∈ Θ∗,

σ+ (F (θ∗)) > σ̄ > 0, (53)

where σ+(F (θ∗)) is the smallest positive eigenvalue of a
F (θ∗) ⪰ 0 and σ̄ > 0 is some constant.

(b) G(θ) has zero residue on Θ∗, i.e., ∥G(θ̄)∥ = 0 for any
θ̄ ∈ Θ∗.

(c) A local error bound condition holds for G(θ), that is there
exists τ > 0 such that for all θ ∈ B(Θ∗, b), it has

1√
N

∥G(θ)∥ ≥ τ∥θ − θ̄∥. (54)

(d) The batch index sets BF
k = Bg

k = Bk ⊂ [N ] with |Bk| =
bk are chosen such that for any θk ∈ B(Θ∗, b),

P
(
Ek|FM

k−1

)
≥ (1− δk),

with a constant δk ∈ [0, 1) and the event

Ek =

{
λk(θk) ≥ ρ

(
1√
N

∥G(θk)∥
)

and ∥Fk − F (θk)∥ ≤ LFλ
2
k(θk)

}
,

where ρ > 0 and LF > 0 are two constants, λk(θk) =
1√
bk
∥Gk(θk)∥, F (θ) and Gk(θ) are defined in (8) and

(15), respectively.

Remark 5. The smoothness conditions (50) and (51) in As-
sumption 2 (a) are satisifed if f and H are twice continuously

differentiable. Remark 4 states that the boundedness of Hi

in (52) is satisfied by the commonly used loss functions.
The condition (53) holds if Θ∗ is connected and compact.
Assumption 2 (b) is satisfied if yi = f(xi, θ), which is the
case when the number of parameters m is larger than the
number of examples N .

Remark 6. Note that Assumption 2 (c) is weaker than assum-
ing the positive definiteness of ∇2

θh(θ
∗). Moreover, we can

see from (49), the definition of F (θ) in (8) and the definition
of Gk(θ) in (15) that for any δk ∈ [0, 1), Assumption 2
(d) will hold by choosing the batch size |Bk| sufficiently
large. Assumptions 2 (b) and (c) are used in [48], [55] for
the Levenberg-Marquardt method. Assumption 2 (d) on the
accuracies of the estimates of the gradient and the FIM is
crucial in controlling the stochasticity in our NGM.

Remark 7. Due to the possibility of the FIM not being
positive definite, the authors [38] explore a deterministic
natural gradient method using the generalized inverse of the
FIM and a step size. To ensure the well-posedness of the
method, they require that the Jacobian J(θk) is full row-
rank and that the loss function L is strongly convex and with
Lipschitz continuous gradient. By assuming a stable-Jacobian
condition, they obtained a linear convergence rate on the
output uk := f(x, θk). This is a first-order type convergence
analysis on the output space, and it does not take into account
the relationship between the FIM and the Hessian matrix. In
addition, the convergence rate of θk cannot be determined
based on their assumptions. In this work, we will show the
quadratic convergence rate of the natural gradient method,
Algorithm 2, by using the error bound condition. We note that
the stable-Jacobian condition and the local error bound are
independent of each other.

Remark 8. From the Lipschitz continuity of Hi(θ) in As-
sumption 2 (a) and (62), H1/2

i (θ) is also Lipschitz continuous
over the bounded set B(Θ∗, b) due to the differentiability of
the square root of positive definite matrices. Furthermore,
by the Lipschitz continuity of Jf(xi,θ)(θ) in Assumption 2

(a), one has the Lipschitz continuity of H
1
2
i (θ)Jf(xi,θ)(θ) and

Hi(θ)Jf(xi,θ)(θ) over B(Θ∗, b), namely, there exists positive
constants LH1/2J and LHJ such that for any θ1, θ2 ∈
B(Θ∗, b) and any i ∈ [N ],∥∥∥Hi(θ1)

1/2Jf(xi,θ)(θ1)−Hi(θ2)
1/2Jf(xi,θ)(θ2)

∥∥∥
≤LH1/2J ∥θ1 − θ2∥,

(55)

and∥∥Hi(θ1)Jf(xi,θ)(θ1)−Hi(θ2)Jf(xi,θ)(θ2)
∥∥ ≤ LHJ ∥θ1−θ2∥.

(56)
Moreover, from (55), (56) and the definitions of H(θ) in (8)
and Hk in (49), for any θ1, θ2 ∈ B(Θ∗, b) and any i ∈ [N ],
we can derive∥∥∥H 1

2 (θ1)J(θ1)−H 1
2 (θ2)J(θ2)

∥∥∥ ≤ LH1/2J

√
N∥θ1 − θ2∥,

(57)∥∥∥H 1
2

k (θ1)Jk(θ1)−H
1
2

k (θ2)Jk(θ2)
∥∥∥ ≤ LH1/2J

√
bk∥θ1 − θ2∥,

(58)
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and

∥H(θ1)J(θ1)−H(θ2)J(θ2)∥ ≤ LHJ

√
N∥θ1 − θ2∥, (59)

∥Hk(θ1)Jk(θ1)−Hk(θ2)Jk(θ2)∥ ≤ LHJ

√
bk∥θ1 − θ2∥.

(60)
Furthermore, from (50) in Assumption 2 (a) and the definition
of Gk(θ) in (15) that

∥Gk(θk)− Gk(θ̄k)∥ ≤
√

bkLG∥θk − θ̄k∥. (61)

Finally, for any θ ∈ B(Θ∗, b), by the definition of Hk in (49)
and (52), we have

α1I ⪯ Hk(θ) ⪯ α2I, (62)

where 0 < α1 < α2 < ∞ are given in Assumption 2 (a).

Firstly, let us validate the Assumption 2 (c) through the
following proposition.

Proposition 2. Consider the optimization problem

min
θ∈Rn

1

2N

N∑
i=1

(yi − f(xi, θ))
2. (63)

(i) Assume that yi = f(xi, θ
∗) for all (xi, yi), where θ∗ ∈

Θ∗, and

Ex∼Qx

[
J⊤
f(x,θ)(θ

∗)Jf(x,θ)(θ
∗)
]
⪰ αI (64)

for some α > 0. Then, for any δ ∈ (0, 1), Assumption 2
(c) is satisfied with c1 =

√
α
2 and probability 1 − δ if

N ∈ N is sufficiently large.
(ii) In particular, for the choice

f(x, θ) = a⊤ϕ(W⊤x) =

d1∑
j=1

ajϕ(x
⊤wj) (65)

with a ∈ Rd1 , W = [w1, . . . , wd1 ] ∈ Rd×d1 , x ∈ Rd,
θ = [w⊤

1 , . . . , w
⊤
d1
]⊤, and ϕ is a smooth activation

function (e.g., GELU [56]), suppose that the matrix
G(θ∗) ∈ R(dd1)×(dd1) with its (i, j)-th d-by-d block given
by

[G(θ∗)]ij = Ex∼Qx

[
aiajϕ

′(x⊤w∗
i )ϕ

′(x⊤w∗
j )xx

⊤]
satisfies G(θ∗) ⪰ αI for some α > 0, where θ∗ =
[(w∗

1)
⊤, . . . , (w∗

d1
)⊤]⊤. Then, (64) holds. Hence, for any

δ ∈ (0, 1), Assumption 2 (c) is satisfied with c1 =
√

α
2

and probability 1− δ if N ∈ N is sufficiently large.

Proof. We first note that for the problem (63), we have

G(θ) =
(
(f(x1, θ)− y1)

⊤, . . . , (f(xN , θ)− yN )⊤
)⊤

=

(
(f(x1, θ)− f(x1, θ

∗))⊤, . . . , (f(xN , θ)− f(xN , θ∗))⊤
)⊤

=

((
Jf(x1,θ)(θ̃)(θ − θ∗)

)⊤
, . . . ,

(
Jf(xN ,θ)(θ̃)(θ − θ∗)

)⊤)⊤

with θ̃ = ξθ+ (1− ξ)θ∗ for some ξ ∈ [0, 1]. Then, we obtain

1

N
∥G(θ)∥2

=(θ − θ∗)⊤

(
1

N

N∑
i=0

J⊤
f(xi,θ)

(θ̃)Jf(xi,θ)(θ̃)

)
(θ − θ∗).

By (64), there exists N̄ ∈ N and b ∈ (0, 1) such that if N ≥ N̄ ,
then

1

N

N∑
i=0

J⊤
f(xi,θ)

(θ̃)Jf(xi,θ)(θ̃) ⪰
α

2
I

holds for all θ ∈ B(θ∗, b) with probability 1− δ. This yields

1√
N

∥G(θ)∥ ≥
√

α

2
∥θ − θ∗∥ (66)

with probability 1− δ. Hence, Proposition 2 (i) holds.
Now, we show that (64) holds for the choice of f in (65).

The derivative of f is ∇wjf(x, θ) = ajϕ
′(x⊤wj)x. Hence,

the 1-by-dd1 Jacobian of f(x, θ) with respect to θ is

Jf(x,θ)(θ) = [a1ϕ
′(x⊤w1)x

⊤, . . . , ad1ϕ
′(x⊤wd1)x

⊤]

= â⊤ ⊗ x⊤,

where ⊗ is the Kronecker product and â =(
a1ϕ

′(x⊤w1), . . . , ad1
ϕ′(x⊤wd1

)
)
. So, by direct calculation,

we have

Ex∼Qx

[
J⊤
f(x,θ)(θ

∗)Jf(x,θ)(θ
∗)
]
= Ex∼Qx

[
(ââ⊤)⊗ xx⊤]

= G(θ∗) ⪰ αI.

Then, Proposition 2 (ii) follows from Proposition 2 (i).

Remark 9. The distribution Qx in Proposition 2 can
be either discrete or continuous. For the finite datasets
(x1, y1), . . . , (xS , yS), taking Qx as the uniform distribution
over {x1, . . . , xS}, Assumption 2 (c) will hold for large
N (≤ S) if yi = f(xi, θ

∗) for all i = 1, . . . , S and
1
S

∑S
i=1 J

⊤
f(xi,θ)

(θ∗)Jf(xi,θ)(θ
∗) ⪰ αI . The positive definite-

ness condition in (64) basically corresponds to the strong
convexity of a population-form of (63). Hence, the error bound
condition used in Assumption 2 can be seen as a generalization
of the strong convexity to a nonconvex problem.

In the following, for notation simplicity, we let Hk =
Hk(θk), λk = λk(θk) and Jk = Jk(θk) and define the
function

φk(d) :=
∥∥∥H− 1

2

k Gk +H
1
2

k Jkd
∥∥∥2 + bkλk∥d∥2. (67)

Then, we can observe from (13) and (49) that the quadratic
model defined in (12) can be rewritten as

mk(d) =
1

2bk
φk(d)−

1

2bk

∥∥∥H− 1
2

k Gk

∥∥∥2
and

dk = arg min
d∈Rn

mk(d) = arg min
d∈Rn

φk(d).

The local quadratic convergence rate of Algorithm 2 can
be shown in the following two steps: Firstly, by utilizing
Assumptions 2 (a), (b) and (c), we show that the projections of
generalized residual H− 1

2

k Gk to the left singular vector space
of H

1
2

k Jk can be controlled by ∥θk − θ̄k∥ and ∥θk − θ̄k∥2.
This further gives the bound of the direction dk and ensures
the iterations staying in the neighborhood B(Θ∗, b). Secondly,
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with the local error bound condition given in Assumption 2
(c), the distance to the optimal solution set ∥θk+1 − θ̄k+1∥
is controlled by the residual G(θk+1), which can be further
related to the generalized residual H− 1

2

k Gk by the Assumption
2 (a). Combining with the established estimation for the
generalized residual and Assumption 2 (d), the quadratic
convergence rate is then obtained.

We now derive some inequalities and set up some notations
which will be used in our following proof of theorems. First,
for any θk ∈ B(Θ∗, b), we do the following eigenvalue
decomposition of F (θ̄k) ⪰ 0:

F (θ̄k) =
1

N
J(θ̄k)

⊤H(θ̄k)J(θ̄k) = V̄kΛ̄kV̄
⊤
k ,

where V̄ ⊤
k V̄k = I and Λ̄k has the format

Λ̄k =

(
Λ̄k,1

0

)
, Λ̄k,1 = Diag

(
λ̄k,1, . . . , λ̄k,rk

)
≻ 0,

and rk is the rank of F (θ̄k). And here, by (53) and θ̄k ∈ Θ∗,
we can assume that

λ̄k,1 ≥ λ̄k,2 ≥ . . . ≥ λ̄k,rk ≥ σ̄. (68)

Suppose that θk is sufficiently close to Θ∗. Then, from the
Lipschitz continuity assumption in Assumption 2 (a), we can
have the eigenvalue decomposition of F (θk) ≻ 0:

F (θk) =
1

N
J(θk)

⊤H(θk)J(θk) = ṼkΛ̃kṼ
⊤
k ,

where Ṽ ⊤
k Ṽk = I and Λ̃k has the format

Λ̃k =

(
Λ̃k,1

Λ̃k,2

)
with Λ̃k,1 = diag

(
λ̃k,1, . . . , λ̃k,rk

)
≻ 0, Λ̃k,2 ⪰ 0. Since it

holds that

F (θ̄k) =

(
1√
N

H 1
2 (θ̄k)J(θ̄k)

)⊤(
1√
N

H 1
2 (θ̄k)J(θ̄k)

)
,

F (θk) =

(
1√
N

H 1
2 (θk)J(θk)

)⊤(
1√
N

H 1
2 (θk)J(θk)

)
,

by the relationships between the eigenvalue decomposition and
singular value decomposition (SVD), we have the following
SVDs:

1√
N

H 1
2 (θ̄k)J(θ̄k) = W̄k

((
Λ̄k,1

) 1
2

0

)
V̄ ⊤
k

and

1√
N

H 1
2 (θk)J(θk) = W̃k


(
Λ̃k,1

) 1
2 (

Λ̃k,2

) 1
2

0

 (Ṽk)
⊤,

where W̄⊤
k W̄k = I and W̃⊤

k W̃k = I . Here, we assume Λ̄k,1

has the same size with Λ̃k,1. Then, by the continuation of
matrix singular values and (57), we have∥∥∥∥∥∥∥∥∥


(
Λ̃k,1

) 1
2 −

(
Λ̄k,1

) 1
2 (

Λ̃k,2

) 1
2

0


∥∥∥∥∥∥∥∥∥

≤ 1√
N

∥∥∥H 1
2 (θ̄k)J(θ̄k)−H 1

2 (θk)J(θk)
∥∥∥

≤ 1√
N

√
N · LH1/2J∥θk − θ̄k∥ = LH1/2J∥θk − θ̄k∥.

So, for θk sufficiently close to Θ∗ and (68), we have

Λ̃k,1 ⪰ 3

4
Λ̄k,1 ⪰ 3σ̄

4
I and

∥∥∥Λ̃k,2

∥∥∥ ≤ L2
H1/2J∥θk − θ̄k∥2.

(69)

On the other hand, we also have the eigenvalue decomposition
of Fk = 1

bk
J⊤
k HkJk = VkΛkV

⊤
k , where V ⊤

k Vk = I ,

Λk =

(
Λk,1

Λk,2

)
and the following SVD:

1√
bk

H
1
2

k Jk = Wk

Λ
1
2

k,1

Λ
1
2

k,2

0

V ⊤
k , (70)

where W⊤
k Wk = I . Here, we assume Λk,1 and Λk,2 have the

same size with Λ̃k,1 and Λ̃k,2, respectively. By Assumption 2
(b), we have Gk(θ̄k) = 0 since θ̄k ∈ Θ∗. If the event Ek in
Assumption 2 (d) happens, by (61), we have

∥Fk − F (θk)∥ ≤ LFλ
2
k(θk) = LF · 1

bk
∥Gk(θk)− Gk(θ̄k)∥2

≤ LFL
2
G∥θk − θ̄k∥2.

Therefore, by the matrix eigenvalue perturbation theory [57],
when the event Ek in Assumption 2 (d) happens, we have∥∥∥∥∥

(
Λk,1 − Λ̃k,1

Λk,2 − Λ̃k,2

)∥∥∥∥∥ ≤ ∥Fk − F (θk)∥

≤ LFL
2
G∥θk − θ̄k∥2.

Hence, by (69), for θk sufficiently close to θ∗, we have

Λk,1 ⪰ 1

2
Λ̄k,1 ⪰ σ̄

2
I and (71)

∥Λk,2∥ ≤
∥∥∥Λ̃k,2

∥∥∥+ ∥Fk − F (θk)∥ (72)

≤
(
L2
H1/2J + LFL

2
G
)
∥θk − θ̄k∥2.

Let Σk,1 =
√
bkΛ

1
2

k,1 and Σk,2 =
√
bkΛ

1
2

k,2. Denote Wk =
(Wk,1,Wk,2,Wk,3) and Vk = (Vk,1, Vk,2, Vk,3). Then, we can
rewrite the SVD (70) as

H
1
2

k Jk = (Wk,1,Wk,2,Wk,3)

Σk,1

Σk,2

0

V ⊤
k,1

V ⊤
k,2

V ⊤
k,3

 .

(73)

Now, let b∗ ∈ (0, b] be sufficiently small such that if
θk ∈ B(Θ∗, b∗) and the event Ek in Assumption 2 (d)
happens, then the inequalities (69) and (71) hold for any θk ∈
B(θ∗, b∗). Then, based on the above preliminary analysis, we
have the following lemmas on the control of the projections
of generalized residuals H− 1

2

k Gk.
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Lemma 4. Suppose that Assumption 2 (a), (b) and (c) hold,
and θk ∈ B(Θ∗, b∗). Then, we have∥∥∥Wk,1W

⊤
k,1H

− 1
2

k Gk

∥∥∥ ≤ α
− 1

2
1 LG

√
bk · ∥θk − θ̄k∥, (74)∥∥∥Wk,3W

⊤
k,3H

− 1
2

k Gk

∥∥∥ ≤ α
− 1

2
1 LHJ

√
bk · ∥θk − θ̄k∥2. (75)

If, in addition, the event Ek in Assumption 2 (d) happens, we
have ∥∥∥Wk,2W

⊤
k,2H

− 1
2

k Gk

∥∥∥
≤

(
α
− 1

2
1 LHJ + L

1
2

FLG + L
H

1
2 J

)√
bk∥θk − θ̄k∥2.(76)

Proof. For the first inequality (74), we have from W⊤
k,1Wk,1 =

I , Gk(θ̄k) = 0, (62) and (61) that∥∥∥Wk,1W
⊤
k,1H

− 1
2

k Gk

∥∥∥ ≤
∥∥∥H− 1

2

k Gk

∥∥∥
≤α

− 1
2

1 ∥Gk(θk)− Gk(θ̄k)∥ ≤ α
− 1

2
1 LG

√
bk · ∥θk − θ̄k∥.

Defining sk = arg min
s∈Rn

∥∥∥H− 1
2

k Gk +H
1
2

k Jks
∥∥∥, for the sec-

ond inequality (75), we have from the SVD of H
1
2

k Jk in (73)
that ∥∥∥Wk,3W

⊤
k,3H

− 1
2

k Gk

∥∥∥ ≤
∥∥∥H− 1

2

k Gk +H
1
2

k Jksk

∥∥∥
≤
∥∥∥H− 1

2

k Gk +H
1
2

k Jk(θ̄k − θk)
∥∥∥

≤
∥∥∥H− 1

2

k

∥∥∥∥∥Gk +HkJk(θ̄k − θk)
∥∥

≤α
− 1

2
1 LHJ

√
bk · ∥θk − θ̄k∥2,

where the last inequality is from (62) and (56).
Finally, we prove the third inequality (76). To this end, we

define

s̃k = arg min
s∈Rn

∥∥∥H− 1
2

k Gk +
(
Wk,1Σk,1V

⊤
k,1

)
s
∥∥∥ .

Then, due to W⊤
k Wk = I , it holds that∥∥∥Wk,2W

⊤
k,2H

− 1
2

k Gk

∥∥∥ =
∥∥∥H− 1

2

k Gk +
(
Wk,1Σk,1V

⊤
k,1

)
s̃k

∥∥∥
≤
∥∥∥H− 1

2

k Gk +
(
Wk,1Σk,1V

⊤
k,1

)
(θ̄k − θk)

∥∥∥
≤
∥∥∥H− 1

2

k Gk +H
1
2

k Jk(θ̄k − θk)
∥∥∥+ ∥∥(Wk,2Σk,2V

⊤
k,2

)
(θ̄k − θk)

∥∥
≤α

− 1
2

1

√
bkLHJ∥θk − θ̄k∥2 + ∥Σk,2∥ · ∥θk − θ̄k∥. (77)

If the event Ek in Assumption 2 (d) happens, by the choice
of Σk,2 and (71), we have

∥Σk,2∥ =
√
bk

∥∥∥Λ 1
2

k,2

∥∥∥ ≤
√
bk

(
LH1/2J + L

1
2

FLG

)
∥θk − θ̄k∥,

which together with (77) implies (76) holds.

Then, we can bound the direction dk by the distance of θk
to the optimal solution set, i.e., ∥θk − θ̄k∥. This ensures that
θk+1 remains within the neighborhood of Assumption 2 if θk
is close enough to Θ∗.

Lemma 5. Suppose that Assumption 2 (a), (b) and (c) hold,
and θk ∈ B(Θ∗, b∗). If the event Ek in Assumption 2 (d)
happens, we have

∥dk∥2 ≤ L2
HJ

ρτα1
∥θk − θ̄k∥3 + ∥θk − θ̄k∥2. (78)

Moreover, if θk ∈ B(Θ∗, b̄), we have

∥dk∥ ≤ 2∥θk − θ̄k∥, (79)

where b̄ = min{b∗, ρτα1/L
2
HJ}.

Proof. First, we observe from the definition of φk in (67) and
dk = arg min

d∈Rn
φk(d) that

∥dk∥2 ≤φk(dk)

bkλk
≤ φk(θ̄k − θk)

bkλk

=

∥∥∥H− 1
2

k Gk +H
1
2

k Jk(θ̄k − θk)
∥∥∥2

bkλk
+ ∥θk − θ̄k∥2.

(80)

Notice that∥∥∥H− 1
2

k Gk +H
1
2

k Jk(θ̄k − θk)
∥∥∥2 ≤ bkα

−1
1 L2

HJ∥θ̄k − θk∥4.
(81)

By Assumption 2 (c), when the event Ek in Assumption 2 (d)
happens, we get

λk = λk(θk) ≥ ρ

(
1√
N

∥G(θk)∥
)

≥ ρτ∥θk − θ̄k∥. (82)

Then, (80)-(82) lead to (78). Finally, (79) follows from (78)
and θk ∈ B(Θ∗, b̄) with b̄ = min{b∗, ρτα1/L

2
HJ}.

Combining above and using Assumption 2 (d), we show the
local quadratic convergence rate of Algorithm 2.

Theorem 2. Suppose that Assumption 2 holds and θk ∈
B(Θ∗, b̄/3). Then, we have

τρ∥θk+1 − θ̄k+1∥ ≤ Ĉ ∥θk − θ̄k∥2 (83)

with probability at least 1−δk, where b̄ > 0 is defined in (79),
and Ĉ is a constant given in (85).

Proof. Since

dk = arg min
d∈Rn

φ(d) =
∥∥∥H− 1

2

k Gk +H
1
2

k Jkd
∥∥∥2
F
+ bkλk∥d∥2

= −Vk,1

(
Σ2

k,1 + bkλkI
)−1

Σk,1W
⊤
k,1H

− 1
2

k Gk

− Vk,2

(
Σ2

k,2 + bkλkI
)−1

Σk,2W
⊤
k,2H

− 1
2

k Gk,

we obtain

H− 1
2

k Gk +H
1
2

k Jkdk

=H− 1
2

k Gk −Wk,1Σk,1

(
Σ2

k,1 + bkλkI
)−1

Σk,1W
⊤
k,1H

− 1
2

k Gk

−Wk,2Σk,2

(
Σ2

k,2 + bkλkI
)−1

Σk,2W
⊤
k,2H

− 1
2

k Gk

=Wk,3W
⊤
k,3H−1

k Gk + bkλkWk,1

(
Σ2

k,1 + bkλkI
)−1

W⊤
k,1H

− 1
2

k Gk

+ bkλkWk,2

(
Σ2

k,2 + bkλkI
)−1

W⊤
k,2H

− 1
2

k Gk. (84)

In the following, suppose the event Ek in Assumption 2 (d)
happens. Then, by (71), we have Λk,1 ⪰ σ̄

2 I holds. So, we

have from Σk,1 =
√
bkΛ

1
2

k,1 that∥∥∥(Σ2
k,1 + bkλkI

)−1
∥∥∥ ≤

∥∥∥Σ−2
k,1

∥∥∥ =
1

bk

∥∥∥Λ−1
k,1

∥∥∥ ≤ 2

bkσ̄

and ∥∥∥(Σ2
k,2 + bkλkI

)−1
∥∥∥ ≤ 1

bkλk
,
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λk = λk(θk) =
1√
bk

∥Gk(θk)∥ ≤ LG
∥∥θk − θ̄k

∥∥ .
Using the above inequalities, we have from (84) and Lemma 4
that ∥∥∥H− 1

2

k Gk +H
1
2

k Jkdk

∥∥∥
≤α

− 1
2

1 LHJ

√
bk∥θk − θ̄k∥2 +

2L2
Gα

− 1
2

1

σ̄

√
bk∥θk − θ̄k∥2

+
(
α
− 1

2
1 LHJ + L

1
2

FLG + L
H

1
2 J

)√
bk∥θk − θ̄k∥2.

Since θk+1 = θk + dk, when the event Ek in Assumption 2
(d) happens, we have from (79) that

∥θk+1 − θ̄k+1∥ ≤ ∥θk − θ̄k+1∥+ ∥dk∥
≤ ∥θk − θ̄k+1∥+ 2∥θk − θ̄k∥ ≤ 3∥θk − θ̄k∥,

which, by θk ∈ B(Θ∗, b̄/3) and θ̄k+1 ∈ Θ∗, implies θk+1 ∈
B(Θ∗, b̄). Then, under the event Ek in Assumption 2 (d), it
follows from Assumption 2 (c), ∥H

1
2

k ∥ ≤ α
1
2
2 by (62), and (79)

that

τρ∥θk+1 − θ̄k+1∥ ≤ ρ√
N

∥G(θk+1)∥ ≤ 1√
bk

∥Gk(θk + dk)∥

≤ 1√
bk

∥Gk +HkJkdk∥+ LHJ∥dk∥2

≤ α
1
2
2√
bk

∥H− 1
2

k Gk +H
1
2

k Jkdk∥+ LHJ∥dk∥2 ≤ Ĉ∥θk − θ̄k∥2,

where

Ĉ = 2

√
α2

α1

(
LHJ + L2

G/σ̄
)
+
√
α2

(
L

1
2

FLG + L
H

1
2 J

)
+4LHJ .

(85)
By Assumption 2 (d), the event Ek happens with at least
probability 1 − δk. Hence, the inequality (83) holds with at
least probability 1− δk. This completes the proof.

V. NUMERICAL EXPERIMENTS

In this section, we would like to perform some simple tests
on examining both global and local convergence properties
of our proposed NGM on the following logistic regression
problem:

min
θ∈Rn

h(θ) =
1

N

N∑
i=1

log
(
1 + exp

(
−bi

(
a⊤i θ

)))
+

ν

2
∥θ∥2,

(86)
where {(ai, bi)}Ni=1, where ai ∈ Rn and b ∈ {−1, 1},
is the dataset and ν > 0 is the regularization parame-
ter. In the numerical tests, ν is set to 0.01. Let gk =
1

|Bg
k|
∑

i∈Bg
k
∇θ log

(
1 + exp

(
−bi

(
a⊤i θ

)))
+ νθ and Vg be an

upper bound of the variance of gk. For comparisons, we
also present the results of the probabilistic model based first-
order method, STORM given by [40]. Default algorithmic
parameters are used except for the initial trust-region radius
∆0. We set ∆0 = 0.8 as it will give better performance than 1.
By the Chebyshev’s inequality [49, Exercise 4.1.2], we have
for any v > 0,

P
[
∥gk −∇h (θk)∥ ≥ v | FM,H

k−1

]
≤ Vg

|Bg
k|v2

.

TABLE II: A description of binary datasets. The integers N
and n denote the number of the samples and the dimension
of data, respectively.

Dataset N n Reference
news20 19996 1355191 [58]

rcv1 20242 47236 [59]
SUSY 5000000 18 [60]

kdd 19264097 748401 [61]

Then, the condition (23) holds as long as |Bg
k | ≥ 2Vgσ

2
k

κ2
g

.
We test two settings on the sample size for two algorithms,
linearly increasing sample size |Bg

k | = ⌈min{N,max{100k+
1000, σ2

k}}⌉ and the exponentially increasing sample size
|Bg

k | = ⌈min{N,max{500 · 1.8k, σ2
k}}⌉. To test the local

quadratic convergence, we adopt a more accurate estimation on
the objective function values, gradients, and FIMs by setting

|Bg
k | = ⌈min{N,max{200, ⌈1/λ2

k⌉}}⌉, (87)

where λk is set as 0.01∥Gk∥. When the sample size is given,
we randomly draw the samples from {1, 2, . . . , N} without
replacement. The datasets used with descriptions are presented
in Table II.

For the implementation, we set η1 = 0.1, η2 = 0.001, γ =
2, σmin = 10−8. The initial σ0 is chosen as 1 and 0.01 to test
the global and local convergence, respectively. We first run Al-
gorithm 1 and then transit to Algorithm 2 when ∥gk∥ ≤ 10−4.
To ensure the boundedness of σk in the local phase, we add an
extra projection, σk = min(σk, 10

10). In this way, the resulting
algorithm could enjoy both global convergence and fast local
convergence as presented in our previous analysis. With both
linearly and exponentially increasing sample sizes, we present
the results in Figure 2. We can see our adaptively regularized
NGM converges in both cases, while the exponentially sample
strategy often converges to a point with lower objective
function value. Compared with STORM, our NGD returns a
point with a lower function value in much smaller epochs,
which indicates the advantage of using Fisher information.
We note that the per-epoch computational cost of NGD is
higher than that of STORM, as computing the natural gradient
direction involves solving a linear equation. For the sample
size (87), Figure 3 clearly shows the quadratic convergence of
the norms of gradients.

VI. CONCLUSION

Due to the computational efficiency of the FIMs, the natural
gradient method (NGM) attracts much attention recently, while
its global convergence and local convergence properties were
not fully studied in the literature. We propose a trust region
based adaptive regularization technique for ensuring global
convergence of NGM under the assumption that the gradi-
ent and function evaluations are probabilistically sufficiently
accurate. By utilizing the connections between the FIM and
the GGN matrix and exploiting the properties of eigenvalue
and singular value decompositions under the local error bound
conditions, we show the quadratic convergence rate of our
proposed method. Our numerical experiment on the logistic
regression problems verifies the global and local convergence
analysis results given in the paper.
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Fig. 2: Numerical tests for linearly and exponentially increasing batchsizes, i.e., |Bg
k | = ⌈min{N,max{100k + 1000, σ2

k}}⌉
and |Bg

k | = ⌈min{N,max{500 · 1.8k, σ2
k}}⌉.
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Fig. 3: Numerical results for |Bg
k | =

⌈min{N,max{200, ⌈1/λ2
k⌉}}⌉. Local quadratic convergence

rate is observed for all the datasets.

The effectiveness of our proposed NGM relies on the low
computational cost of solving (12). As the FIM is high-
dimensional, it is worthwhile to investigate more practi-
cal approximations with inexpensive inverses, such as the

Kronecker-factored approximation [2].
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