Posted November 23, 2024
Probability Seminar Questions or comments?
2:30 pm Lockett 240
Wasiur KhudaBukhsh, University of Nottingham
Enzyme kinetic reactions as interacting particle systems: Stochastic averaging and parameter inference
We consider a stochastic model of multistage Michaelis--Menten (MM) type enzyme kinetic reactions describing the conversion of substrate molecules to a product through several intermediate species. The high-dimensional, multiscale nature of these reaction networks presents significant computational challenges, especially in statistical estimation of reaction rates. This difficulty is amplified when direct data on system states are unavailable, and one only has access to a random sample of product formation times. To address this, we proceed in two stages. First, under certain technical assumptions akin to those made in the Quasi-steady-state approximation (QSSA) literature, we prove two asymptotic results: a stochastic averaging principle that yields a lower-dimensional model, and a functional central limit theorem that quantifies the associated fluctuations. Next, for statistical inference of the parameters of the original MM reaction network, we develop a mathematical framework involving an interacting particle system (IPS) and prove a propagation of chaos result that allows us to write a product-form likelihood function. The novelty of the IPS-based inference method is that it does not require information about the state of the system and works with only a random sample of product formation times. We provide numerical examples to illustrate the efficacy of the theoretical results. Preprint: https://arxiv.org/abs/2409.06565