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The EHMM calculator was developed to create demonstrations for the Explicit Hypergeometric
Modularity method, introduced in [1] and [2], and studied further in [7], [12], [13], [14]. However, many
features, especially the character sums, may be broadly applicable. In this file, we will explain how to
use the main features of the calculator in the hopes that it will be useful to others.

0.1 Initiating the class

To use the calculator, you should download the files constructor.py and EHMMv3.sage and load them
to your Sage file. The file constructor.py constructs the class EHMM, while the file EHMMv3.sage

defines several invariants of hypergeometric series needed for this construction. As such, it is possible
to use EMMv3.sage without loading constructor.py, but the reverse is not possible.

Define an arithmetic hypergeometric datum

HD = {{a1, . . . an}, {b1, . . . , bn}} = {α, β}

for ai, bi ∈ Q. Note that the length of the α set must equal the length of the β set for the calculator
to work properly. This differs from many classical references, where the first element of the β set is
assumed to be 1 and often omitted. For example, the Gaussian hypergeometric function

2F1

[
1/2 1/2

1
; x

]

has hypergeometric datum HD = {{1/2, 1/2}, {1, 1}} in our implementation. The datum HD =
{{1/2, 1/2}, {1}} corresponds to a different hypergeometric series. In general, the complex-analytic
hypergeometric function is defined

F (HD, z) =

∞∑
k=1

(
n∏

i=1

(ai)k
(bi)k

)
zk

where (a)k = a(1+a) · · · (a+k−1) = Γ(a+k)
Γ(a) , and Γ(·) is the Gamma function. Classical hypergeometric

functions are defined in Sagemath as
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hypergeometric(alpha,beta\{1},z)

where α is the first multiset in HD, and β is the second multiset in HD and beta\{1} means the set
with a 1 removed. In other words, Sagemath uses the nFn+1(z) form of a hypergeometric series, un-
like this calculator. Refer to https://doc.sagemath.org/html/en/reference/functions/sage/functions/
hypergeometric.html. We establish the following notation. For ai, bj ∈ Q, Let α♭ = {a1, · · · , an}, β♭ =
{b1 = 1, · · · , bn}, and

HD♭ = {α♭, β♭}

be a hypergeometric datum. The hypergeometric modularity method then appends a rational number
r and s to α♭ and β♭ respectively to construct the datum

HD♯ = {α♭ ∪ {r}, β♭ ∪ {s}} = {α♯, β♯}.

The modularity aspect requires F (HD♭, t) be a modular form for t some modular function.
The EHMM class is given by

EHMM(multiset1, multiset2, value, hauptmodul, r, s)

with the input

1. multiset1 a multiset corresponding to α♯.

2. multiset2 a multiset of the same length as multiset1 corresponding to β♯.

3. value (optional) the rational number z at which the hypergeometric series F (HD♯, z) is eval-
uated. Since the hypergeometric modularity method is only implemented for z = 1, the class
assumes z = 1. The functionality of the program is limited when z ̸= 1; namely, .q_expansion()
defined below will not work.

4. hauptmodul (optional) any q-series. Typically this will by a modular function, corresponding
to t as mentioned above. The hauptmoduln for the arithmetic triangle groups listed in [2] are
already implemented, as described below. This is allowed to be an arbitrary q-series, but the
resulting q-expansion may not correspond to a modular form if it is not a modular function on
the monodromy group for the hypergeometric series.

5. r (optional) this appends a parameter to multiset1, corresponding to r in HD♯.

6. s (optional) this appends a parameter to multiset2, corresponding to s in HD♯. Inputting r

and s fix (multiset1,multiset2) as HD♭. As such, if r and s are specified, they should not
be repeated in multiset1 and multiset2, since the program will append r and s whenever
they are given. For this reason, if you provide one of r and s, you must provide both.

If hauptmodul, r, or s are not specified, the program will try to guess them based on the tables in the
Appendix to [2]. So long as the desired r and s are listed last in multiset1 and multiset2 respectively,
this typically works well for examples arising from the tables. When working with data or modular
functions outside the scope of the tables, these inputs will be required to use the q-expansion features.

0.2 Simple Commands

Set HD=EHMM(alpha,beta,z,t,r,s).

Here are some basic commands within the family.

1. HD.alpha returns multiset1 with r appended if it is specified.

2. HD.beta returns multiset2 with s appended if it is specified,
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3. HD.tq(N) returns N nonzero terms of the q-expansion of hauptmodul when one is specified or
the program is able to identify one in Table 1 of [2]. When N is not specified, it defaults to 10.

Note that the order of the datum matters when returning the hauptmodul, since the program
recognizes the final two elements in each of multiset1 and multiset2 as r and s. If you are receiving
an error, one can always try specifying r and s as demonstrated in the third example. If this does not
work, the hauptmodul is not in Table 1, and so must be provided manually.

Many invariants of hypergeometric series are built into the EHMM class. The commands listed
below depend only on alpha and beta, as well as r and s if they are specified.

1. HD.denom() returns the lowest common denominator of of the elements in α and β, which is
usually denoted M .

2. HD.gamma() returns the γ vector of HD, which is defined as γ(HD♭) = −1 +
∑n

i=1(bi − ai). It
is used to determine the local exponents at the singularity 1.

3. HD.defined_over_Q() returns "true" if the hypergeometric datum is defined overQ and "false"
if not. Refer to [11] for a discussion of hypergeometric motives defined over Q.

4. HD.coeff_p_order(N,p) for N a positive integer and p a prime returns a graph of the p-adic
orders of the first N coefficients of the classical hypergeometric series F (HD, z).

5. HD.zigzag() returns the zigzag diagram and Hodge-Tate weights for HD. Refer to [9] and [4]
for the construction. When z = 0, 1, the Hodge-Tate weights may be off.

6. HD.conjugate() returns a list of hypergeometric data corresponding to the Galois conjugates of
the finite field version P(HD, z, p). See the discussion at the beginning of Section 0.3 for more
details.

7. HD.conjugate_zigzag() returns zigzag diagrams for all conjugates.

Here is an illustration of the zigzag diagrams for a Galois family.
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Note that for the attributes in this section, the order of the datum no longer matters. We illustrate
with one other example.

This provides the zigzag diagrams for a non-Galois family studied in [13]. It is apparent just from
looking at the zigzag diagrams that the behavior will be more complicated in this case.

We can also observe the cyclic nature of p-adic orders for the coefficients from HD.coeff_p_order().

0.3 Finite Field Hypergeometric Functions

Finite field hypergeometric functions and Jacobi sums are character sums that are the traces of Frobe-
nius for Galois representations which are defined on GQ(ζM ), due to work of Katz [8] and Weil [15]
respectively. Therefore, a priori, the input for these functions should be prime ideals p in Q(ζM ),
and the characters will be characters on the residue field Z[ζM ]/p. When p splits, or equivalently
lies above a rational prime p ≡ 1 mod M , the residue field is the finite field Fp. In these cases, the

character sum can be implemented using Fp only, and each choice of generator for F̂×
p corresponds to

a different prime ideal above p in Z[ζM ]. In practice, we fix a generator, which is the inverse of the the
Teichmüller character, and regard finite field hypergeometric functions at splitting p as only depending
on a prime p ≡ 1 mod M . We note that if we change the choice of generator, the result will be a
Galois conjugate of the original character sum. Thus, the ambiguity introduced by choosing a gener-
ator is resolved by the notion of conjugates in the EHMM calculator, which provide the trace value
for the various choices of generator by changing the hypergeometric datum instead of the generating
character. The conjugates are obtained via HD.conjugates(). Note that this is related to but not the
same as the concept of conjugate K2(r, s) functions introduced in [2], [12], [14]. In this way, the EHMM
calculator computes finite field hypergeometric functions for primes p assuming p ≡ 1 mod M and the
Teichmüller character is chosen as a generator. Work of Beukers, Cohen, and Mellit [3] implies Galois
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representations attached to hypergeometric data defined over Q can be extended to GQ, and provides
a formula for the values at all primes. This formula is not implemented in the EHMM calculator,
since finite field hypergeometric functions for all primes can already be computed in Magma for datum
defined over Q. See https://magma.maths.usyd.edu.au/magma/handbook/hypergeometric motives.

We recall F̂×
p the set of multiplicative character of a finite field Fp. This group is implemented

already in Sagemath as DirichletGroup(p). By the discussion above, assuming p ≡ 1 mod M , the
character defined by

ιr,p(x) ≡ x(p−1)·r mod p

for p a prime ideal above p in the cyclotomic field Q(ζM ) by Weil [15] can be identified with an element

of F̂×
p when p is fixed. Assume r and s are rational numbers whose least common denominator is M .

Then we can define the Jacobi sum as

Jp(r, s) =
∑
x∈Fp

ιr,p(x) · ιs,p(1− x).

This is implemented as

Jacobi(r,s,p,optional)

where r and s are rational numbers with least common denominator M , and p is a prime congruent
to 1 mod M . The optional fourth argument can be replaced with "p_adic", which returns the value
as a p-adic number. An error will be returned if p ̸≡ 1 mod M .

Jacobi sums are already implemented in Sagemath as A.jacobi_sum(B) when A and B are char-
acters. In particular, our Jacobi sum above is equal to

(DirichletGroup(p)[1].bar()^(((p-1)*r).floor())).jacobi_sum(DirichletGroup(r)[1]

.bar()^(((p-1)*s)).floor()).

Greene [6] defined the finite field binomial coefficient as(
A

B

)
= −B(−1) · J(A,B).

The binomial coefficient is implemented as

binomial(r,s,p,optional)

which returns (
ιr,p
ιs,p

)
for r, s, and p as before, and the optional fourth argument again converting the value to a p-adic
number if "p_adic" is entered. This can be used to define a version of the finite field period function,
see [5, §4]

P(HD, z, p) :=
(−1)n

q − 1

n∏
i=2

ιp,aiιp,bi(−1)
∑
χ∈k̂×

p

(
ιp,a1χ

χ

)(
ιp,a2χ

ιp,b1χ

)
...

(
ιp,anχ

ιp,bn−1
χ

)
. (1)

The period function is given by
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PP(multiset1,multiset2,value,p,optional)

where all of the input is as before. A normalized P(HD, z, p), denoted as F(HD, z, p) in [5], is used
by McCarthy [10] and Beukers, Cohen, and Mellit [3]. See [5] for the normalization referred to. This
is called Hp(HD, z) or H(HD, z, p).

Finite field hypergeometric functions can be accessed from the EHMM class as well. They depend
on value, r and s if specified, but not on hauptmodul .

1. HD.trace(p,optional) for p a prime provides the value P(HD, value, p) as a cyclotomic integer.
If you provide the optional second argument of "p_adic", the value will be a p-adic integer. Note
that this value depends on the order of multiset1 and multiset2 If HD is not defined over Q,
the function will return an error if p is not congruent to 1 mod M . The datum is said to be
defined over Q is the polynomials

∏
k(x − e2akπi) and

∏
k(x − e2bkπi) belong to Z[x]. Refer to

[3] for more information.

2. HD.Hp(p,optional) for p a prime provides the value Hp(HD, value, p) as a cyclotomic number.
If you provide the optional second argument of "p_adic", the value will be a p-adic number. If
HD is not defined over Q, the function will return an error if p is not congruent to 1 mod M .

3. HD.truncated(p,optional) provides the truncated classical series Fp−1(HD, z). Note this
truncates at p − 1 rather than p. If p is a prime, the function provides the value of the
truncated series as a p-adic integer by default. If p is not a prime, the function the error
’p is not a prime’. The optional second argument can be replaced with a prime number q,
and the HD.truncated(p,q) produces the series truncated at p−1 as a q-adic integer. This works
regardless of whether p is a prime, so long as q is a prime. The optional second argument can
also be replaced with "rational" regardless of what p is, and HD.truncated(p,"rational")

will return Fp−1(HD, z) as a rational number.

4. HD.normalized_Hp(optional) returns the first few character sums values as 2) of Theorem 2.1
of [2]. For the Galois data and the corresponding Hecke eigenforms listed in Table 1 of [12],
Theorem 2.1 of [2] ensures that this will equal the Fourier coefficients of the listed modular form.
Changing the argument optional will modify the number of primes listed in the table; however,
beware that if optional is large, the program will run very slowly.

For instance,

.

The function HD.normalized_Hp() produces several traces at once, as illustrated below.
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In general, the values will be cyclotomic integers rather than rational integers. Sometimes, even
when P(HD, 1, p) is an integer, Hp(HD, 1, p) is not, as demonstrated below.

In these situation, sometimes it is more useful to convert Hp to a p-adic number. For instance, we can
convert the example above to be p-adic and compare it to HD.truncated(73) to demonstrate Theorem
2.1 of [2].

Note that the first two p-adic digits are the same. This is what is meant by a mod p2 congruence when
the numbers are not integers.

0.4 q-expansions

The formal series expansion for the classical hypergeometric function can also be accessed via

Hyp(multiset1, multiset2,value,N)

The multiset1 and multiset2 are the α and β sets for the hypergeometric datum. Since this function
is set up to be a power series, the parameter z in value must be a power series or a polynomial. The
value FN (HD; z0) for z0 a constant should be obtained using the command

EHMM(HD;z_0).truncated(N+1)

As noted earlier, F (HD♭, z) is a modular form when HD♭ corresponds to an entry in Table 1 of [2]
and z is replaced with an appropriate hauptmodul. For example, if λ is the modular lambda function,

F ({1/2, 1/2}, {1, 1};λ(q)) = θ23(τ) =
∑

n1,n2∈Z
qn

2
1+n2

2 where q = e2πiτ ,

is a weight-1 modular form.
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The integral formula says that

1

B(r, s− r)

∫ 1

0

zr−1(1− z)s−r−1F (HD♭, z)dz = F (HD♯, 1).

The modular form constructed by the hypergeometric modularity method is the integrand up to a
constant, tr−1(1 − t)s−r−1F (HD♭, t)dt, where t becomes the appropriate hauptmodul. To compute
q-expansions of these modular forms, all of the input data for EHMM class is required. In particular,
the logarithmic derivative of t(q) is a weight-2 modular form if t(q) is a Hauptmodul.

We can verify that this function is actually θ43(τ) as well.

As noted above, sometimes r, s, and hauptmodul can be omitted when they are implemented in
Table 1, but these inputs are still essential in the background.

1. HD.q_expansion(N) returns the q-expansion constructed via the EHMM with N nonzero terms.
Note this may not be the q-expansion of a congruence or holomorphic modular form. If N is
omitted, the command assumes N = 6. The value for N currently has a maximum value of 100.
It is now possible to specify any q-series Q with rational coefficients for hauptmodul and return
the formal power series

Q1−r(1−Q)s−r−1F (HD♭, Q)
dQ

dq

normalized so the first coefficient is 1. If Q is not a hauptmodul on the monodromy group of
the underlying 2F1(z) series, as is the case for the data listed in Table 1 of [2], this will not be a
modular form. This feature is intended purely for experimental purposes.

2. HD.conjugate_exp(N) returns the q-expansions for all of the conjugates given via HD.conjugate()
at once each with N nonzero terms. If N is omitted, the command assumes N = 6. The value
for N currently has a maximum value of 100. Extra care is required when using this command
if the family is non-Galois, since the Galois conjugates do not have a one-to-one correspondence
with holomorphic differentials as in the Galois families. In these cases, some q-series returned
will be not be holomorphic, while other holomorphic conjugates will not appear. Refer to [13]
for details.
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0.5 Other built in q-series

Several other q-series are built in for the purposes of demonstrations. We record these here.

1. The function eta(n,N) for n and N both positive integers returns the expanded form of

N∏
k=1

(1− qnk).

This is useful for building other eta quotients, though note the term q1/24 appearing in the eta
function is omitted.

2. The function K2(r,s, optional) returns the function K2(r, s)(Nτ) introduced in [2] and clas-
sified in [12]. The optional third argument specifies the number of Fourier coefficients.

3. The function K1(r,s, optional) returns the function K1(r, s)(Nτ) introduced in [14]. The
optional third argument specifies the number of Fourier coefficients.

4. The function K3(r,s, optional) returns the function K3(r, s)(Nτ) introduced in [2] and clas-
sified in [7]. The optional third argument specifies the number of Fourier coefficients.

The hauptmoduln in Table 1 of [2] are given the following names in the calculator, for reference.

Group Name in [2] Code
Γ0(1) 1728/j Jinv

Γ0(2) u uu

Γ0(3) t3 t3

Γ0(4) t2 t2

Γ0(2)
+ t4+ t4p

Γ0(3)
+ t6+ t6p

Table 1: Code for hauptmoduln in EHMM calculator
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